156 research outputs found

    Causality re-established

    Get PDF
    Causality never gained the status of a "law" or "principle" in physics. Some recent literature even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of reversibility of laws of physics, based either on determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such causality notion appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establish a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The causality notion is logically completely independent of the misidentified concept of "determinism", and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude arguing that causality naturally establishes an arrow of time. This implies that the scenario of the "Block Universe" and the connected "Past Hypothesis" are incompatible with causality, and thus with quantum theory: they both are doomed to remain mere interpretations and, as such, not falsifiable, similar to the hypothesis of "super-determinism". This article is part of a discussion meeting issue "Foundations of quantum mechanics and their impact on contemporary society".Comment: Presented at the Royal Society of London, on 11/12/ 2017, at the conference "Foundations of quantum mechanics and their impact on contemporary society". To appear on Philosophical Transactions of the Royal Society

    The effect of proficiency on “non-native” EFL teachers’ feelings and self-reported behaviours

    Get PDF
    The current study addresses the question whether the level of proficiency of teachers who teach a “non-native” language, English, affects their attitudes, motivation, well-being and self-reported classroom practices. This quantitative study is based on a cross-sectional research design in order to investigate the relationship between actual English proficiency of 376 English Foreign Language (EFL) teachers from around the world who had English as a Foreign Language and feelings and self-reported behaviours. Statistical analyses showed that more proficient teachers scored higher on the dimensions “Classroom practice” and “Attitudes toward students and institution”. They were also more motivated and happier. Intermediate (B1-B2) teachers scored significantly lower on these measures than EFL educators with Advanced proficiency (C1-C2). No significant differences emerged between teachers at Lower advanced (C1) and Upper advanced levels (C2). An argument is made that all dependent and independent variables are connected, highly dynamic and interacting directly and indirectly, which means that causality is multi-directional. The implication is that educational authorities should organise regular in-service training to maintain and boost teachers’ proficiency because investing in teachers’ linguistic skills represents a long-term investment in their emotional well-being and will ultimately benefit their students

    BRCT domains of the DNA damage checkpoint proteins TOPBP1/Rad4 display distinct specificities for phosphopeptide ligands

    Get PDF
    TOPBP1 and its fission yeast homologue Rad4, are critical players in a range of DNA replication, repair and damage signalling processes. They are composed of multiple BRCT domains, some of which bind phosphorylated motifs in other proteins. They thus act as multi-point adaptors bringing proteins together into functional combinations, dependent on post-translational modifications downstream of cell cycle and DNA damage signals. We have now structurally and/or biochemically characterised a sufficient number of high-affinity complexes for the conserved N-terminal region of TOPBP1 and Rad4 with diverse phospho-ligands, including human RAD9 and Treslin, and Schizosaccharomyces pombe Crb2 and Sld3, to define the determinants of BRCT domain specificity. We use this to identify and characterise previously unknown phosphorylationdependent TOPBP1/Rad4-binding motifs in human RHNO1 and the fission yeast homologue of MDC1, Mdb1. These results provide important insights into how multiple BRCT domains within TOPBP1/Rad4 achieve selective and combinatorial binding of their multiple partner proteins

    Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1

    Get PDF
    TopBP1 is a scaffold protein that coordinates activation of the DNA-damage-checkpoint response by coupling binding of the 9-1-1 checkpoint clamp at sites of ssDNA, to activation of the ATR-ATRIP checkpoint kinase complex. We have now determined the crystal structure of the N-terminal region of human TopBP1, revealing an unexpected triple-BRCT domain structure. The arrangement of the BRCT domains differs significantly from previously described tandem BRCT domain structures, and presents two distinct sites for binding phosphopeptides in the second and third BRCT domains. We show that the site in the second but not third BRCT domain in the N-terminus of TopBP1, provides specific interaction with a phosphorylated motif at pSer387 in Rad9, which can be generated by CK2

    Histological and immunohistochemical studies on the epididymal duct in the dromedary camel (Camelus dromedarius)

    Get PDF
    This study was conducted to underscore the spatial distribution of some biologically active proteins within the epididymal duct in the dromedary camel. Paraffin-embedded sections from different regions of epididymis were stained by conventional histological techniques and by immunohistochemistry. A battery of primary antibodies against six proteins (S100, alpha smooth muscle actin [α-SMA], connexin-43 [Cx43], galactosyltransferase [GalTase], angiotensin converting enzyme [ACE], and vascular endothelial growth factor [VEGF]) were used. The epididymal epithelium consisted of five cell populations: principal, basal, apical, dark, and halo cells. The histochemical findings indicated the absence of binding sites for VEGF and Cx43. The principal cells (PCs) showed variable immunoreactivity (IR) for ACE, S100, and GalTase throughout the whole length of the duct. The apical surfaces of most PCs (at the caput) and some PCs (at the corpus) exhibited intense ACE-IR, whereas those at the cauda displayed alternating negative and strong immunostaining. Similarly, moderate S100-IR was found in cytoplasm and nuclei of all PCs at the caput, few PCs at the corpus, and several PCs alternating with negative PCs at the cauda. In contrast, only some PCs showed weak to strong GalTase-IR in different regions. Apart from negative to weak positive S100-IR, basal cells failed to show IR for all other proteins. Apical cells displayed strong IR for ACE, S100, and GalTase with some regional differences. The peritubular and vascular smooth muscle cells revealed strong α-SMA-IR in all regions. In conclusion, the spatial distribution of different proteins in camel epididymis showed similarities and differences to other mammalian species. The region-specific topographic distribution of different proteins and cell types might indicate that the caput and cauda are metabolically more active than that of the corpus

    Tumor Necrosis Factor-α and Muc2 Mucin Play Major Roles in Disease Onset and Progression in Dextran Sodium Sulphate-Induced Colitis

    Get PDF
    The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1ÎČ only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFÎČ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1ÎČ and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC

    Type-1.5 superconductivity in multicomponent systems

    Get PDF
    In general a superconducting state breaks multiple symmetries and, therefore, is characterized by several different coherence lengths Οi\xi_i, i=1,...,Ni=1,...,N. Moreover in multiband material even superconducting states that break only a single symmetry are nonetheless described, under certain conditions by multi-component theories with multiple coherence lengths. As a result of that there can appear a state where some coherence lengths are larger and some are smaller than the magnetic field penetration length λ\lambda: Ο1≀Ο2...<2λ<ΟM≀...ΟN\xi_1\leq \xi_2... < \sqrt{2}\lambda<\xi_M\leq...\xi_N. That state was recently termed "type-1.5" superconductivity. This breakdown of type-1/type-2 dichotomy is rather generic near a phase transition between superconducting states with different symmetries. The examples include the transitions between U(1)U(1) and U(1)×U(1)U(1)\times U(1) states or between U(1)U(1) and U(1)×Z2U(1)\times Z_2 states. The later example is realized in systems that feature transition between s-wave and s+iss+is states. The extra fundamental length scales have many physical consequences. In particular in these regimes vortices can attract one another at long range but repel at shorter ranges. Such a system can form vortex clusters in low magnetic fields. The vortex clustering in the type-1.5 regime gives rise to many physical effects, ranging from macroscopic phase separation in domains of different broken symmetries, to unusual transport properties
    • 

    corecore