997 research outputs found

    Influence of the sample geometry on the vortex matter in superconducting microstructures

    Full text link
    The dependence of the vortex penetration and expulsion on the geometry of mesoscopic superconductors is reported. Hall magnetometry measurements were performed on a superconducting Al square and triangle. The stability of the vortex patterns imposed by the sample geometry is discussed. The field-temperature HTH-T diagram has been reconstructed showing the transitions between states with different vorticity. We have found that the vortex penetration is only weakly affected by the vortex configuration inside the sample while the expulsion is strongly controlled by the stability of the vortex patterns. A qualitative explanation for this observation is given.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.

    Linear magnetic flux amplifier

    Full text link
    By measuring the critical current versus the applied magnetic field Ic(Φ)I_c(\Phi) of an Al superconducting loop enclosing a soft Permalloy magnetic dot, we demonstrate that it is feasible to design a linear magnetic flux amplifier for applications in superconducting quantum interference devices. The selected dimensions of a single-domain Permalloy dot provide that the preferential orientation of the magnetization is rotated from the perpendicular direction. By increasing an applied magnetic field, the magnetization of the dot coherently rotates towards the out-of-plane direction, thus providing a flux gain and an enhancement of the sensitivity. As a result of a pronounced shape anisotropy, the flux gain generated by the dot can be tuned by adjusting the dimensions of the dot.Comment: to appear in Applied Physics Letter

    Flux Confinement in Mesoscopic Superconductors

    Full text link
    We report on flux confinement effects in superconducting submicron line, loop and dot structures. The main idea of our study was to vary the boundary conditions for confinement of the superconducting condensate by taking samples of different topology and, through that, modifying the lowest Landau level E_{LLL}(H). Since the critical temperature versus applied magnetic field T_{c}(H) is, in fact, E_{LLL}(H) measured in temperature units, it is varied as well when the sample topology is changed. We demonstrate that in all studied submicron structures the shape of the T_{c}(H) phase boundary is determined by the confinement topology in a unique way.Comment: 10 pages, 5 EPS figures, uses LaTeX's sup.sty, contribution to a special issue of "Superlattices and Microstructures

    Tunable Field Induced Superconductivity

    Full text link
    We investigate the transport properties of a thin superconducting Al layer covering a square array of magnetic dots with out-of-plane magnetization. A thorough characterization of the magnetic properties of the dots allowed us to fine-tune their magnetic state at will, hereby changing the influence of the dots on the superconductor in a continuous way. We show that even though the number of vortex-antivortex pairs discretely increases with increasing the magnetization of the dots, no corresponding discontinuity is observed in the resistance of the sample. The evolution of the superconducting phase boundary as the magnetic state of the dots is swept permits one to devise a fully controllable and erasable field induced superconductor

    Vortex melting and decoupling transitions in YBa2_{2}Cu4_{4}O8_{8} single crystals

    Full text link
    The vortex correlation along the c-axis in high quality single crystals of YBa2_{2}Cu4_{4}O8_{8} has been investigated as a function of temperature T in different magnetic fields, using the quasi-flux transformer configuration. A simultaneous sharp drop associated with the vortex lattice melting is observed in both the primary and secondary voltages(Vtop_{top} and Vbot_{bot}). Just above the melting temperature, the vortices form three-dimensional line liquid with the correlation length along the c direction LcL_{c}\leq t, the sample thickness. The temperature where a resistive peak in Rbot_{bot} develops corresponds to the decoupling temperature Td_{d} at which the vortices loose their correlation along the c-direction and they dissolve into the two dimensional pancake vortices. The H-T phase diagram for the YBa2_{2}Cu4_{4}O8_{8} single crystal is obtained.Comment: 1 Text file, 3 eps figure

    Magnetic-field dependence of the spin states of the negatively charged exciton in GaAs quantum wells

    Get PDF
    We present high-field (<50 T) photoluminescence measurements of the binding energy of the singlet and triplet states of the negatively charged exciton in a 200-Angstrom quantum well. Comparing our data with those of other groups and with theoretical predictions we clearly show how the singlet, "bright" and "dark" triplet states may be identified according to the high-field dependence of their binding energies. We demonstrate that a very consistent behavior of the binding energy in a magnetic field has been observed in quantum wells of different widths by different groups and conclude that the triplet state found in this, as well as nearly all other experiments, is undoubtedly the bright triplet. By combining our data with that in the literature we are able to present the generic form of the binding energy of the spin states of the charged exciton in a magnetic field, which reveals the predicted singlet to dark triplet ground state transition at about 20 T

    Resistive switching in ultra-thin La0.7Sr0.3MnO3 / SrRuO3 superlattices

    Full text link
    Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macroscopic world. Here we report the study of the resistive switching characteristics of a of hybrid structure made out of a superlattice with ultrathin layers of two ferromagnetic metallic oxides, La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO). Bipolar resistive switching memory effects are measured on these LSMO/SRO superlattices, and the observed switching is explainable by ohmic and space charge-limited conduction laws. It is evident from the endurance characteristics that the on/off memory window of the cell is greater than 14, which indicates that this cell can reliably distinguish the stored information between high and low resistance states. The findings may pave a way to the construction of devices based on nonvolatile resistive memory effects
    corecore