1,531 research outputs found

    Lysine mediation of neuroendocrine food regulation in guinea fowl

    Get PDF
    In poultry, obesity is partly influenced by food intake, and is increasingly becoming a nationwide problem. Hypothalamic food intake mechanisms are involved metabolically and neurologically via two peptide hormones, leptin and ghrelin, and the amino acid glutamate, which is enzymatically derived from lysine metabolism. We hypothesize that lysine homeostasis mediates regulation of feed intake and performance characteristics via the brain–liver axis through glutamate sensing. The objective was to examine the effects of lysine homeostasis in avian food regulation and performance through neuroendocrine signaling. One-day-old male French Guinea fowl (GF) keets (n = 270) were weighed and randomly assigned to 5 dietary treatments (0.80%, 0.86%, 0.92%, 1.10% control, and 1.22% lysine) in 3 replicates. At 4 and 8 wk of age 20% of experimental birds were randomly selected, weighed and euthanatized. The liver, pancreas, and hypothalamus were excised, snap frozen in liquid nitrogen and stored at –80°C until use. Tissue mRNA was extracted and cDNA synthesized for qPCR assays. Lysine at 0.80 and 0.86% hindered growth, development of digestive organs, expression of brain and liver glutamate and leptin receptors, and caused high mortality in GF. The fold change for metabotropic glutamate receptor I was lower (P \u3c 0.05) in liver and higher in brain at 0.86 and 0.92% than the control (1.10%) and 1.22% lysine. The 1.22% lysine exhibited highest expression of ionotropic glutamate receptor, while brain ghrelin receptor expression was highest at 0.86 and 0.92% lysine. Therefore, dietary lysine concentration may influence signaling pathways regulating food intake in brain-liver axis via glutamate synthesis

    Kepler-432: a red giant interacting with one of its two long period giant planets

    Get PDF
    We report the discovery of Kepler-432b, a giant planet (Mb=5.410.18+0.32MJup,Rb=1.1450.039+0.036RJupM_b = 5.41^{+0.32}_{-0.18} M_{\rm Jup}, R_b = 1.145^{+0.036}_{-0.039} R_{\rm Jup}) transiting an evolved star (M=1.320.07+0.10M,R=4.060.08+0.12R)(M_\star = 1.32^{+0.10}_{-0.07} M_\odot, R_\star = 4.06^{+0.12}_{-0.08} R_\odot) with an orbital period of Pb=52.5011290.000053+0.000067P_b = 52.501129^{+0.000067}_{-0.000053} days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.51340.0089+0.0098e = 0.5134^{+0.0098}_{-0.0089}, which we also measure independently with asterodensity profiling (AP; e=0.5070.114+0.039e=0.507^{+0.039}_{-0.114}), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; Mcsinic=2.430.24+0.22MJup,Pc=406.22.5+3.9M_c \sin{i_c} = 2.43^{+0.22}_{-0.24} M_{\rm Jup}, P_c = 406.2^{+3.9}_{-2.5} days), and adaptive optics imaging revealed a nearby (0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise asteroseismic oscillations, which enable precise measurements of the stellar mass, radius and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well-aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5-day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015 (submitted Nov 11, 2014). Updated with minor changes to match published versio

    Recognition and Accommodation at the Androgen Receptor Coactivator Binding Interface

    Get PDF
    Prostate cancer is a leading killer of men in the industrialized world. Underlying this disease is the aberrant action of the androgen receptor (AR). AR is distinguished from other nuclear receptors in that after hormone binding, it preferentially responds to a specialized set of coactivators bearing aromatic-rich motifs, while responding poorly to coactivators bearing the leucine-rich “NR box” motifs favored by other nuclear receptors. Under normal conditions, interactions with these AR-specific coactivators through aromatic-rich motifs underlie targeted gene transcription. However, during prostate cancer, abnormal association with such coactivators, as well as with coactivators containing canonical leucine-rich motifs, promotes disease progression. To understand the paradox of this unusual selectivity, we have derived a complete set of peptide motifs that interact with AR using phage display. Binding affinities were measured for a selected set of these peptides and their interactions with AR determined by X-ray crystallography. Structures of AR in complex with FxxLF, LxxLL, FxxLW, WxxLF, WxxVW, FxxFF, and FxxYF motifs reveal a changing surface of the AR coactivator binding interface that permits accommodation of both AR-specific aromatic-rich motifs and canonical leucine-rich motifs. Induced fit provides perfect mating of the motifs representing the known family of AR coactivators and suggests a framework for the design of AR coactivator antagonists

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)

    Get PDF
    We present a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of 29.7 fb1{\rm fb}^{-1} recorded at the Υ(4S)\Upsilon(4S) resonance and 3.9 fb1{\rm fb}^{-1} off-resonance. One of the neutral B mesons, which are produced in pairs at the Υ(4S)\Upsilon(4S), is fully reconstructed in the CP decay modes J/ψKS0J/\psi K^0_S, ψ(2S)KS0\psi(2S) K^0_S, χc1KS0\chi_{c1} K^0_S, J/ψK0J/\psi K^{*0} (K0KS0π0K^{*0}\to K^0_S\pi^0) and J/ψKL0J/\psi K^0_L, or in flavor-eigenstate modes involving D()π/ρ/a1D^{(*)}\pi/\rho/a_1 and J/ψK0J/\psi K^{*0} (K0K+πK^{*0}\to K^+\pi^-). The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The proper time elapsed between the decays is determined by measuring the distance between the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample finds Δmd=0.516±0.016(stat)±0.010(syst)ps1\Delta m_d = 0.516\pm 0.016 {\rm (stat)} \pm 0.010 {\rm (syst)} {\rm ps}^{-1}. The value of the asymmetry amplitude sin2β\sin2\beta is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor-eigenstate sample and about 642 tagged B0B^0 decays in the CP-eigenstate modes. We find sin2β=0.59±0.14(stat)±0.05(syst)\sin2\beta=0.59\pm 0.14 {\rm (stat)} \pm 0.05 {\rm (syst)}, demonstrating that CP violation exists in the neutral B meson system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR

    Get PDF
    The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay BK+B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process BK+B\to K\ell^+\ell^-, where +\ell^+\ell^- is either an e+ee^+e^- or μ+μ\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+ee^+e^- storage ring. Averaging over K()K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(BK+)=(0.650.13+0.14±0.04)×106{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(BK+)=(0.880.29+0.33±0.10)×106{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the BK+B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for BK+B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
    corecore