25 research outputs found

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Screening for the BRCA1-ins6kbEx13 mutation: potential for misdiagnosis. Mutation in brief #964. Online.

    No full text
    Misdiagnosis of a germline mutation associated with an inherited disease syndrome can have serious implications for the clinical management of patients. A false negative diagnosis (mutation missed by genetic screening) limits decision making about intervention strategies within families. More serious is the consequence of a false positive diagnosis (genetic test suggesting a mutation is present when it is not). This could lead to an individual, falsely diagnosed as a mutation carrier, undergoing unnecessary clinical intervention, possibly involving risk-reducing surgery. As part of screening 283 ovarian cancer families for BRCA1 mutations, we used two different methods (mutation specific PCR and multiplex ligation-dependent probe amplification) to screen for a known rearrangement mutation L78833.1:g.44369_50449dup (ins6kbEx13). We found false positive and false negative results in several families. We then tested 61 known carriers or non-carriers from an epidemiological study of BRCA1 and BRCA2 mutation carriers (the EMBRACE study). These data highlight the need for caution when interpreting analyses of the ins6kbEx13 mutation and similar mutations, where characterising the exact sequence alteration for a deleterious mutation is not a part of the routine genetic test. 2007 Wiley-Liss, Inc

    Sources, distribution, and acidity of sulfate-ammonium aerosol in the Arctic in winter-spring

    Get PDF
    We use GEOS-Chem chemical transport model simulations of sulfate-ammonium aerosol data from the NASA ARCTAS and NOAA ARCPAC aircraft campaigns in the North American Arctic in April 2008, together with longer-term data from surface sites, to better understand aerosol sources in the Arctic in winter-spring and the implications for aerosol acidity. Arctic pollution is dominated by transport from mid-latitudes, and we test the relevant ammonia and sulfur dioxide emission inventories in the model by comparison with wet deposition flux data over the source continents. We find that a complicated mix of natural and anthropogenic sources with different vertical signatures is responsible for sulfate concentrations in the Arctic. East Asian pollution influence is weak in winter but becomes important in spring through transport in the free troposphere. European influence is important at all altitudes but never dominant. West Asia (non-Arctic Russia and Kazakhstan) is the largest contributor to Arctic sulfate in surface air in winter, reflecting a southward extension of the Arctic front over that region. Ammonium in Arctic spring mostly originates from anthropogenic sources in East Asia and Europe, with added contribution from boreal fires, resulting in a more neutralized aerosol in the free troposphere than at the surface. The ARCTAS and ARCPAC data indicate a median aerosol neutralization fraction [NH^(+)_(4)]/(2[SO^(2-)_(4)] + [NO^(-)_(3)]) of 0.5 mol mol^(-1) below 2 km and 0.7 mol mol^(-1) above. We find that East Asian and European aerosol transported to the Arctic is mostly neutralized, whereas West Asian and North American aerosol is highly acidic. Growth of sulfur emissions in West Asia may be responsible for the observed increase in aerosol acidity at Barrow over the past decade. As global sulfur emissions decline over the next decades, increasing aerosol neutralization in the Arctic is expected, potentially accelerating Arctic warming through indirect radiative forcing and feedbacks
    corecore