32 research outputs found

    Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies

    Get PDF
    The dramatic increase in heterogeneous types of biological data—in particular, the abundance of new protein sequences—requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity—GPCRs and kinases from humans, and the crotonase superfamily of enzymes—we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships

    Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Binding of Ras to phosphoinositide 3-kinase p110? is required for Ras- driven tumorigenesis in mice

    Get PDF
    Ras proteins signal through direct interaction with a number of effector enzymes, including type I phosphoinositide (PI) 3-kinases. Although the ability of Ras to control PI 3-kinase has been well established in manipulated cell culture models, evidence for a role of the interaction of endogenous Ras with PI 3-kinase in normal and malignant cell growth in vivo has been lacking. Here we generate mice with mutations in the Pi3kca gene encoding the catalytic p110? isoform that block its interaction with Ras. Cells from these mice show proliferative defects and selective disruption of signaling from growth factors to PI 3-kinase. The mice display defective development of the lymphatic vasculature, resulting in perinatal appearance of chylous ascites. Most importantly, they are highly resistant to endogenous Ras oncogene-induced tumorigenesis. The interaction of Ras with p110? is thus required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation

    Fibroblast Growth Factor 2-Mediated Translational Control of IAPs Blocks Mitochondrial Release of Smac/DIABLO and Apoptosis in Small Cell Lung Cancer Cells

    No full text
    The mitochondrial release of cytochrome c and Smac/DIABLO has been implicated in the activation of apoptosis in response to cell stress. Smac promotes cytochrome c-induced activation of caspases by sequestering the inhibitor of apoptosis protein (IAP) family of potent caspase suppressors. Differential release from mitochondria of cytochrome c and Smac can occur, but the underlying mechanism and physiological significance of this are unclear. Here we show that the mechanism by which fibroblast growth factor 2 (FGF-2) protects small cell lung cancer (SCLC) cells from etoposide-induced cell death involves inhibition of Smac release but not of cytochrome c release. This process is MEK dependent and correlates with an increased expression of XIAP and cellular IAP-1, mediated principally through translational regulation. Exogenous expression of XIAP is sufficient to inhibit caspase 9 activation, Smac release, and cell death induced by etoposide. Prevention of the FGF-2-promoted increase in levels of functional IAPs by RNA interference or the cell-permeant Smac amino-terminal peptide blocked FGF-2-induced protection. FGF-2 can thus protect SCLC cells from chemotherapeutic drugs by modulating IAP levels via posttranscriptional regulation, providing a mechanism for postmitochondrial survival signaling by the MEK/mitogen-activated protein kinase pathway
    corecore