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SUMMARY

Ras proteins signal through direct interaction
with a number of effector enzymes, including
type I phosphoinositide (PI) 3-kinases. Although
the ability of Ras to control PI 3-kinase has been
well established in manipulated cell culture
models, evidence for a role of the interaction of
endogenous Ras with PI 3-kinase in normal
and malignant cell growth in vivo has been lack-
ing. Here we generate mice with mutations in the
Pi3kca gene encoding the catalytic p110a iso-
form that block its interaction with Ras. Cells
from these mice show proliferative defects and
selective disruption of signaling from growth
factors to PI 3-kinase. The mice display defec-
tive development of the lymphatic vasculature,
resulting in perinatal appearance of chylous as-
cites. Most importantly, they are highly resistant
to endogenous Ras oncogene-induced tumori-
genesis. The interaction of Ras with p110a is
thus required in vivo for certain normal growth
factor signaling and for Ras-driven tumor for-
mation.

INTRODUCTION

Activating point mutations in the genes encoding the Ras

subfamily of small GTP-binding proteins contribute to the

formation of a large proportion of human tumors. Analysis

of over 40,000 human tumor samples indicates an activat-

ing mutation rate of 22%, 8.2%, and 3.7% for KRAS,

NRAS, and HRAS, respectively (Catalogue Of Somatic

Mutations In Cancer, http://www.sanger.ac.uk/genetics/

CGP/cosmic/). The signaling pathways by which activated

Ras protein controls cell growth and contributes to malig-

nant transformation are therefore of considerable continu-
ing interest. Several direct Ras effector enzyme families

have been characterized, the best studied of which are

Raf kinases, type I phosphoinositide (PI) 3-kinases, Ral-

guanine nucleotide exchange factors (Ral-GEFs), the Rac

exchange factor Tiam1, and phospholipase C 3 (Down-

ward, 2003). Of these, the genes encoding both B-Raf

and the p110a PI 3-kinase catalytic subunit have been

found to be frequently activated by somatic mutation in

human cancer (Weir et al., 2004), with overall mutation

frequencies around 10%–15% for each. PI 3-kinase activ-

ity is further implicated in carcinogenesis by the frequent

inactivation of the tumor suppressor gene PTEN, which

encodes the phosphatase that reverses the incorporation

of phosphate at the 30 position of the inositol ring (Cully

et al., 2006). However, genetic analyses of Ras signaling

in development of worms and flies has provided only

very limited evidence for a significant role for Ras effector

pathways other than Raf (Prober and Edgar, 2002).

In recent years, intense efforts have been made to de-

termine the relative importance of the different effector

pathways in the process of Ras-induced tumor formation.

For the most part, this has involved the exogenous ex-

pression in cultured cells of activated forms of the effector

proteins or of partial loss-of-function mutant Ras proteins

that have selective ability to interact with one effector

compared to another (Repasky et al., 2004). These exper-

iments have revealed varying effector dependencies of

Ras-induced transformation in different cell types and

species. However, the physiological significance of these

studies may be limited by the difficulty of using exoge-

nously expressed, artificially activated constructs in cul-

tured cells to mimic the amplitude and duration of Ras

effector activation in naturally occurring human tumors.

Another line of investigation has been to study chemical

carcinogenesis using dimethylbenzanthracene (DMBA),

which mutationally activates the endogenous Hras gene,

and phorbol ester to induce skin tumors in mice (Quinta-

nilla et al., 1986). When applied to mice in which genes

for key Ras effectors have been deleted, it has been found
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that the presence of each of Tiam1, PLC3, and Ral-GDS is

required for skin tumor formation (Bai et al., 2004; Gonza-

lez-Garcia et al., 2005; Malliri et al., 2002). This implicates

these effectors in Ras-induced tumorigenesis although

does not formally prove that Ras acts through them, or

whether the tumor-suppressive effects of deletion of these

effectors are specific to Ras, rather than other oncogene,

induced carcinogenesis. Unfortunately it has not been

possible to undertake a similar analysis for the other major

Ras effectors due to the early lethality of mice deleted for

the Raf-1, B-Raf, p110a, and p110b genes (Vanhaese-

broeck et al., 2005; Wellbrock et al., 2004).

While the importance of endogenous PI 3-knase and

other non-Raf effectors in Ras-driven tumorigenesis re-

mains the subject of debate, it is even less clear how im-

portant these pathways are for normal growth factor

signaling in a physiological context. Overexpression of

a dominant-negative Asn17 Ras mutant partly inhibits in-

duction of PIP3 by epidermal and nerve growth factor in

cultured PC12 cells (Rodriguez-Viciana et al., 1994) and

by fibroblast growth factor in SKF5 cells (van Weering

et al., 1998). However, the specificity of this inhibitor of

Ras activity is uncertain. Little has been done to address

this issue in a whole animal context.

In this report we set out to study the importance of the

interaction of endogenous PI 3-kinase p110a with endog-

enous Ras in development and tumorigenesis in mice. An-

imals were made with point mutations knocked into the

Pi3kca gene that prevented interaction with activated

Ras. These mice show defects in lymphatic development

and are highly resistant to endogenous Ras oncogene-

induced tumorigenesis. The interaction of Ras with p110a

thus represents an important physiological component

of both normal and malignant Ras signaling.

RESULTS

Generation of Mice Bearing Mutations in PI 3-Kinase

p110a that Block Interaction with Ras

In order to investigate the role played by the interaction of

PI 3-kinase p110a with Ras in mammalian development

and tumorigenesis, we set out to generate mice in which

the interaction was disrupted by the introduction of point

mutations into the endogenous p110a gene. A previous

study of the structure of active Ras bound to a different

type I PI 3-kinase isoform, p110g, had identified four crit-

ical amino acids that are absolutely required for this inter-

action (Pacold et al., 2000). Although the degree of homol-

ogy between different type I PI 3-kinase isoforms is not

extremely high in the Ras-binding domain (RBD) (Vanhae-

sebroeck and Waterfield, 1999), two of the four amino

acids characterized as critical to the interaction of Ras

with p110g were conserved in human, cow, mouse, and

fly p110a (threonine 208 and lysine 227 in mammalian

pl10a, Figure 1A).

To determine whether mutation of these residues would

be sufficient to fully disrupt the interaction of Ras with

p110a, we changed threonine 208 to aspartic acid and ly-
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sine 227 to alanine, either separately or together. We

avoided reversing the charge of these sites as previous

studies had shown that mutation of lysine 227 to glutamic

acid had a significant stimulatory effect on the basal cata-

lytic activity of p110a, although substitution with neutral

alanine did not (Rodriguez-Viciana et al., 1996). We inves-

tigated whether GST-fusion proteins of the RBD of the mu-

tant forms of p110a were capable of binding to Ras. As

shown in Figure 1B, wild-type p110a very efficiently inter-

acted with both H- and K-Ras, but both the single and

double mutations on p110a abrogated its ability to bind.

Similar results were obtained in the reverse experiment,

where full-length wild-type and mutant forms of p110a

were mixed with GTP-bound GST-V12 H-Ras fusion pro-

tein (Figure 1C).

Based on the ability of the mutations T208D and K227A

to block the interaction of p110a with Ras, we set out to

introduce these two changes into the endogenous gene,

Pik3ca, encoding p110a in mice. Homologous recombina-

tion was used in ES cells to replace exon 3 with a version

containing the double mutation. These cells were used to

generate mice from which the neo selection cassette was

subsequently removed by breeding onto a strain express-

ing Cre in the germline (see schematic in Figure 1D).

Crosses of heterozygous mutant Pik3ca mice generated

live-born mice with wild-type, heterozygous mutant, and

homozygous mutant genotypes as determined by PCR

analysis (Figure 1D inset).

Disruption of the Interaction of p110a with Ras

Attenuates Growth Factor Signaling to the PI

3-Kinase Pathway and Cell Proliferation

Mouse embryonic fibroblasts (MEFs) were made from em-

bryonic day (E) 13.5 embryos from wild-type, heterozy-

gous mutant, and homozygous mutant genotypes. These

cells were used to determine the importance or otherwise

of the direct interaction of endogenous p110a with endog-

enous Ras for the ability of various growth factors to acti-

vate downstream signaling pathways, in particular ones

where Ras could be directly involved, such as Raf/MEK/

ERK and PI 3-kinase/Akt. Stimulation of wild-type MEFs

with EGF, FGF2, or PDGF led to the activation of both

the ERK and Akt pathways as determined by the appear-

ance of phosphorylated ERK and phosphorylated Akt,

as expected. However, in cells homozygous for the muta-

tion in the RBD of p110a, we found that Akt activation

in response to EGF was significantly reduced and FGF2

signaling to Akt was completely abrogated (Figure 2A).

In contrast, PDGF signaling was unaffected in mutant

cells as well as ERK signaling in response to EGF and

PDGF.

Analyzing a dose-response curve for suboptimal con-

centrations of PDGF revealed no difference in the level

of Akt or ERK activation between mutant and wild-type

cells but deficient signaling to Akt, but not ERK, through-

out the whole range of EGF concentrations (Figure 2B).

Since PI 3-kinase has been shown to be important in in-

sulin signaling and glucose homeostatsis (Foukas et al.,



Figure 1. Generation of Mice Bearing

Mutations in PI 3-Kinase p110a that

Block Interaction with Ras

(A) Schematic of the domain structure of p110a

and alignment of p110 isoforms from several

species. The red blocks indicate mutations

made to disrupt the interaction of p110a with

Ras. The alignment was carried out using

the clustal algorithm of Lasergene Navigator

(DNASTAR).

(B) Wild-type and mutant forms of the GST-

tagged Ras-binding domain (RBD) of p110a

were expressed in COS7 cells, along with the

activated V12 mutant form of H-Ras or K-Ras.

The cells were lysed and GST-p110 RBD was

recovered on glutathione agarose. Bound V12

Ras was detected with pan-Ras antibody.

(C) Untagged p110a and p85a were transiently

overexpressed in COS7 cells. Cell extracts

were made and added to GTP-loaded V12 H-

Ras GST fusion protein bound to glutathione

agarose. The Ras beads were washed and

bound p110a detected by western blotting

with p110a antibodies.

(D) Schematic representation of the strategy for

introduction of the T208D and K227A muta-

tions into exon 3 of pik3ca, the gene encoding

p110a in mice. Arrows indicate the location of

genotyping primers. Inset: genotyping PCR of

samples after Cre-mediated excision of the

neomycin selection cassette. The upper band

represents the mutant allele (containing a resid-

ual 30 base pairs of the loxP site). The lower

band represents the wild-type allele.
2006), we also looked at the insulin responsiveness of

wild-type and mutant MEFs but found little difference

(data not shown). To confirm that the differences seen in

Akt activation reflected alterations in PIP3 levels in the

cell, immunocytochemistry with a PIP3-specific monoclo-

nal antibody was used. As seen in Figure 2C, in response

to EGF, mutant MEFs showed highly reduced levels of

PIP3 compared to wild-type MEFs, while PDGF stimula-

tion was similar in the two genotypes.

To establish whether these differences arose due to al-

tered regulatory signaling to the mutant p110a or funda-

mental defects in its enzymatic activity, we characterized

the protein in further detail. As shown in Figure S1A avail-

able with this article online, the in vitro lipid kinase activity

of immunoprecipitated mutant p110a is indistinguishable

from that of the wild-type p110a. Also the amount of p85

coimmunoprecipating with mutant p110a was similar to

that with wild-type p110a, thereby suggesting that the

binding affinity of p110a for p85 is not affected by the

RBD mutations (Figure S1B). In addition, the binding of

p85 to tyrosine-phosphorylated proteins following growth
factor stimulation also remains unaltered in cells bearing

the p110a RBD mutations (Figure S1C). Furthermore, the

level of expression of p110a in MEFs was the same for

each genotype, as were the expression levels of p110b

and p85 (Figure S1D). p110d and p110g expression was

not detectable by immunblot in these cells (data not

shown).

It thus appears likely that the mutations in the RBD do

not interfere with the basic enzymatic activity of p110a,

its coupling to the p85 regulatory subunit, or expression

of PI 3-kinase components, suggesting that the biological

effects of these mutations are indeed reflecting altered

coupling to Ras. To further confirm this, dominant-nega-

tive mutant Ras (N17) was cotransfected with epitope-

tagged Akt into wild-type MEFs, which were subsequently

stimulated with growth factors. Tagged Akt was immuno-

precipitated and its kinase activity assayed in vitro. As

shown in Figure S1E, the ability of EGF and FGF2 to acti-

vate Akt was completely abolished by dominant-negative

Ras in this assay, while that of PDGF was much less

affected. Similar observations have been previously
Cell 129, 957–968, June 1, 2007 ª2007 Elsevier Inc. 959



Figure 2. Disruption of the Interaction of

p110a with Ras Attenuates Growth Fac-

tor Signaling to the PI 3-Kinase Pathway

and Cell Proliferation

(A) Serum-starved wild-type and p110a mutant

MEFs were stimulated with EGF (50 ng/ml),

FGF2 (20 ng/ml), or PDGF (20 ng/ml) for 10

min prior to lysis of cells and analysis of the

phosphorylation state of ERK and Akt by West-

ern blotting.

(B) Serum-starved wild-type and p110a mutant

MEFs were stimulated with EGF or PDGF at the

indicated concentrations (ng/ml) for 10 min

prior to lysis of cells and analysis of the phos-

phorylation state of ERK and Akt by Western

blotting.

(C) Serum-starved wild-type and p110a mutant

MEFs were stimulated with EGF (50 ng/ml),

FGF2 (20 ng/ml), or PDGF (20 ng/ml) for 10 min

prior to immunocytochemistry staining for PIP3.

(D) To quantify effects of p110a mutation on

cell-cycle progression, wild-type, mutant, and

heterozygous MEFs were pulse-labeled with

BrdU in serum-containing medium. Cells were

analyzed by FACS for staining with antibody

to BrdU and for total DNA content with propi-

dium iodide. The proportions of cells in G1, S,

and G2/M phases of the cell cycle are shown

graphically.
made in other cell systems (Rodriguez-Viciana et al., 1994;

van Weering et al., 1998).

The decreased responsiveness of the PI 3-kinase path-

way, a key regulator of cellular proliferation, survival, and

metabolism, to certain growth factors raised the issue of

whether there was a defect in the growth of cells in which

the Ras-p110a interaction was disrupted. To quantify the

proportion of actively dividing cells in the different popula-

tions, we pulse-labeled MEFs growing in serum containing

medium with BrdU. The proportion of homozygous mutant

cells in S phase was considerably reduced compared to

wild-type and heterozygous cells, and a larger proportion

of the mutant cells had accumulated in the G1 and G2

phases of the cell cycle (Figure 2D). There was little differ-

ence, however, in the number of apoptotic cells or in cell

size in the different MEF populations (data not shown).

Activation of the PI 3-Kinase Pathway by Oncogenic

Mutant Ras Requires Direct p110a-Ras Interaction

The ability of expression of oncogenic mutant Ras to in-

duce activation of PI 3-kinase is well established (Rodri-

guez-Viciana et al., 1994). However, the possibility existed

that this effect was indirect, driven by interaction of Ras

with effectors other than PI 3-kinase, possibly through
960 Cell 129, 957–968, June 1, 2007 ª2007 Elsevier Inc.
the stimulation of transcriptional changes leading to auto-

crine growth factor production. To address whether the di-

rect interaction of Ras with p110a is needed in order for

oncogenic mutant Ras to stimulate the PI 3-kinase path-

way, we made use of a posttranslationally inducible acti-

vated form of Ras, ER:V12 H-Ras (Dajee et al., 2002). In

this construct, the hormone-binding domain of the estro-

gen receptor is fused to the amino terminus of an activated

mutant of H-Ras. On addition of the ligand 4-hyroxyta-

moxifen (4HT), steric hindrance of Ras is relieved leading

to its ability to interact with effectors. In serum-starved

wild-type immortalized MEFs stably expressing ER:V12

H-Ras, addition of 4HT rapidly leads to activation of both

ERK and Akt, with phosphorylation of these targets visible

within 10 min (Figure 3). In contrast, MEFs expressing the

RBD mutant p110a fail to activate Akt significantly even af-

ter 24 hr induction with 4HT, although ERK activation is

normal. These data therefore confirm that direct interac-

tion of Ras with PI 3-kinase is crucial for Akt activation.

Mice Deficient in the Interaction of p110a with Ras

Have Defective Lymphatic Development

When animals heterozygous for the p110a mutations were

interbred, we observed that the number of homozygous



mutant animals obtained on genotyping at two weeks of

age (2%) was significantly below that expected (Table

1). Analysis of E18.5 embryos of similar litters demon-

strated a ratio of homozygous mutant animals that was

close to Mendelian (19%), while the ratio for one-day-old

pups was 9%, suggesting that some mutant animals

were being lost around the time of birth. The number of

pups counted shortly after birth was higher than the num-

ber that remained after 14 days because a number of ap-

parently sick animals had to be culled in the first few days

after birth, in accordance with local animal welfare regula-

tions. Closer examination of pups just after birth revealed

that most mutant animals exhibited a milky appearance of

Figure 3. Activation of the PI 3-Kinase Pathway by Oncogenic

Mutant Ras Requires Direct p110a-Ras Interaction

Wild-type and mutant MEFs were immortalized with SV40 T antigen

and then infected with a retroviral construct, ER:V12 H-Ras, express-

ing inducibly activatable Ras. Stable drug-selected populations of

cells were assessed for the ability of 4-hyroxytamoxifen (4HT) to in-

duce phosphorylation of Akt and ERK. Cells were serum starved for

16 hr followed by induction with 100 nM 4HT for the indicated times.

Cells were then harvested and probed with the indicated antibodies

by Western blotting.
the peritoneum (Figure 4A). This is a sign of chylous asci-

tes, a condition caused by the leakage of lymphatic fluid

into the peritoneal cavity, where it can cause an inflamma-

tory response that can lead to death. In newborn animals,

this is usually associated with developmental malforma-

tion of the intestinal lymphatic system (Press et al., 1982).

To determine the cause of the suspected chylous asci-

tes, sections of bowel from newborn pups were examined

for any abnormality in their tissue architecture. The jeju-

num demonstrated an edemal accumulation of fluid in

the submucosal layer of the intestinal wall (Figure 4B). Be-

cause this region of the submucosa contains the lym-

phatic network collecting chyle from the intestinal lacteals,

we suspected that the p110a mutant mice had an abnor-

mally developed lymphatic system in this section of the in-

testine. Closer examination of the lymphatic vasculature

system in the mutant mice revealed deficient branching

and development of the network. Staining of E18.5 em-

bryos for the receptor tyrosine kinase VEGFR-3, the re-

ceptor for VEGF-C and VEGF-D, which is expressed in

the lymphatic endothelium (Dumont et al., 1998, Kaipai-

nen et al., 1995), showed that although major lymph ves-

sels in the thoracic cavity, such as the thoracic duct,

were present in the mutants, the finer vessels of the lym-

phatic network, such as the intercostal vessels, were

completely absent (Figure 4C). Similar analysis of the

skin and diaphragm of E18.5 embryos showed highly re-

duced numbers of vessels and a much-reduced level of

network branching (Figure 4D). Staining for another

marker of the lymphatic network, the homeodomain tran-

scription factor PROX-1, confirmed the lack of a fully de-

veloped lymphatic network in the mesenterium of p110a

mutant mice (Figure 4E).

A relatively small proportion of the p110a mutant mice

survived into adulthood. These mice appeared to be

healthy, and any signs of chylous ascites disappeared.

Analysis of the lymphatic vasculature in these surviving

adult mice revealed it to be normal (data not shown), sug-

gesting either that the lymphatic system recovers from its

earlier retarded development or that the severity of the de-

velopmental defect is variable and in a minority of mutant

mice the lymphatics develop normally. However, the mu-

tant mice that survived to adulthood exhibited a reduced

body weight that remained below wild-type levels at all

stages of growth (Figure S2).
Table 1. Disruption of the Interaction of p110a with Ras Leads to Reduced Numbers of Surviving Mice

Parental cross #1: het 3 het #2: het 3 het #3: het 3 het

Litter age at genotyping 14 days after birth 1 day after birth Embryonic day 18.5

Wild-type 124 30 23

Heterozygous mutant 283 77 33

Homozygous mutant 8 10 13

% homozygous mutant obtained 2% 9% 19%

Table showing numbers of animals produced from heterozygote/heterozygote crosses for each genotype when analyzed at differ-

ent ages. Each group represents an independent set of animals.
Cell 129, 957–968, June 1, 2007 ª2007 Elsevier Inc. 961



Figure 4. Mice Deficient in the Interac-

tion of p110a with Ras Have Defective

Lymphatic Development

(A) p110a mutant mice exhibit chylous ascites:

picture of mutant as compared to wild-type

new-born mouse pups demonstrating the ac-

cumulation of chyle in the abdominal cavity.

(B) Histological analysis of the intestine of new-

born mice reveals an abnormality in the submu-

cosal layer of the jejunum in p110a mutants.

(C) p110a mutant mice exhibit deficient devel-

opment and branching of the lymphatic sys-

tem. Whole-mount examination with VEGFR3

staining of mutant E18 embryos demonstrates

the presence of the thoracic duct (arrowhead)

but shows the lack of an extensive branching

network in the intercostal region of the thorax

(arrows).

(D) Similar examination of the diaphragm and

the skin of p110a mutant E18 embryos shows

complete absence of the lymphatic system in

the diaphragm and deficient branching of the

lymphatic vessels in the skin.

(E) Staining of the mesenteric lymphatic net-

work with PROX-1 antibody indicates reduced

numbers of lymphatic endothelial cells in mu-

tant animals.
Disruption of the Interaction of p110a with Ras

Inhibits In Vitro Transformation of Fibroblasts

To assess the requirement of the interaction of 110a with

Ras for the ability of Ras and other oncogenes to trans-

form murine fibroblasts in vitro, MEFs from wild-type, het-

erozygous, and homozygous mutant p110a animals were

immortalized by expression of SV40 large T antigen, then

infected with retroviral vectors expressing activated mu-

tant H-Ras, activated mutant EGF receptor L858R, or pol-

yoma virus middle T oncogene. These cell populations

were then tested for their degree of transformation by as-

sessing their ability to form colonies in soft agar (Fig-

ure 5A). As quantified in Figure 5B, wild-type MEFs

expressing activated H-Ras grew independently of an-

chorage whereas homozygous mutant MEFs completely

failed to show transformation by H-Ras. The heterozygous

cells showed somewhat reduced transformation effi-

ciency by H-Ras. All three genotype MEFs were found to

be expressing H-Ras at similar levels as determined by im-

munoblotting (data not shown). The ability of activated

EGF receptor to transform MEFs was also compromised

by homozygous mutation of the p110a RBD, but polyoma

middle T transformed all three genotypes equally well.

Since anchorage-independent growth is a hallmark of on-

cogenic transformation in vitro, these data support a direct
962 Cell 129, 957–968, June 1, 2007 ª2007 Elsevier Inc.
cell-autonomous role for the Ras-PI 3-kinase interaction in

Ras-mediated tumorigenesis and also in transformation

by some other oncogenes known to act upstream of

Ras, such as EGF receptor. In addition to effects on trans-

formation by H-Ras, p110a RBD mutation also compro-

mised the ability of K-Ras to transform MEFs (Figure S3).

Disruption of the Interaction of p110a with Ras

Blocks Carcinogenesis Driven by K-Ras

In order to investigate whether the ability of endogenous

p110a to interact with endogenous Ras plays a role in car-

cinogenesis caused by oncogenic mutation of the K-Ras

gene in vivo, the p110a mutant mice were bred with K-

Ras LA2 mice. In this strain, an activating mutation has

been introduced into one allele of the K-Ras gene, but ex-

pression is silenced by a disrupting sequence. This is lost

by homologous recombination at very low frequency, re-

sulting in the expression of oncogenic K-Ras protein at en-

dogenous levels in a small number of cells in each tissue.

The mice develop lung adenocarcinomas at high fre-

quency, with most of the mice dying due to tumor burden

by 200 days of age (Johnson et al., 2001).

Mice that were homozygous for the Pi3kca mutation

and carried one copy of the K-Ras LA2 transgene showed

similar survival rates in the first few weeks of life to



equivalent mice lacking K-Ras mutation. These mice were

sacrificed at 4 months and the numbers of tumor nodules

visible on the lung surface were counted. The number of

tumors occurring in the Pi3kca mutant mice was massively

reduced compared to those with wild-type PI 3-kinase.

While the K-Ras LA2 mice typically had forty or so macro-

scopic tumors on the surface of the lung, the Pi3kca mu-

tant mice had between zero and two visible tumors, and

these were much smaller (Figure 6A). One Pi3kca mutant

K-Ras LA2 mouse was aged to 6 months and found to

be still entirely free of macroscopically detectable lung tu-

mors (data not shown).

Histological analysis of the Pi3kca mutant mouse lung

tissue revealed that they did contain some foci of abnor-

mal cells that might represent premalignant lesions. How-

ever, these were very small compared to tumors found in

K-Ras LA2 animals on a wild-type background (Figure 6B).

In addition, we used immunohistochemistry with phos-

phospecific antibodies to study the activation state of

Figure 5. Disruption of the Interaction of p110a with Ras In-

hibits In Vitro Transformation of Fibroblasts

MEFs from wild-type, heterozygous, and homozygous mutant animals

were immortalized by expression of SV40 large T antigen. Immortal-

ized cells were then infected with activated mutant H-Ras V12, acti-

vated mutant EGF receptor L858R, or polyoma middle T. Selected sta-

ble populations of cells were tested for their ability to grow in an

anchorage-independent manner in soft agar.

(A) Representative images of macroscopic colonies formed after 3

weeks are shown.

(B) Quantification of the numbers of colonies formed. Error bars shown

are standard errors of the mean for triplicate samples.
Akt in the tumors and premalignant lesions in the K-Ras

LA2 animals on the Pi3kca mutant and wild-type back-

grounds. As shown in Figure S4A, there is evidence that

Akt is activated in the Ras-induced tumors found in the

wild-type mice but not in the lesions found in the PI 3-

kinase mutant background.

Furthermore, the levels of cell proliferation, apoptosis,

and senescence were studied in the tumors and premalig-

nant lesions of these animals. As shown in Figure S4B,

TUNEL assays revealed low levels of apoptosis in Ras-

induced tumors found on a wild-type background, but

there were signs of significant levels of apoptosis occur-

ring in the small lesions found on the PI 3-kinase mutant

background. The proliferative rates in the lesions and

tumors in the two backgrounds were similar, as measured

by phospho-histone H3 staining for mitotic cells (Fig-

ure S4C), so it is likely that the difference in the sizes of

the tumors in the wild-type and the PI 3-kinase mutant

backgrounds is at least in part due to elevated rates of

cell death in the absence of direct Ras binding to p110a.

Another way of looking at the efficiency of Ras-induced

tumor formation is to use the two-stage skin carcino-

genesis protocol using initiation with the mutagen DMBA

(7,12-dimethylbenzanthracene), which causes activating

mutations in the murine H-ras gene, and promotion with

the phorbol ester TPA (12-O-tetradecanoylphorbol-13-

acetate). As shown in Figure S5, PI 3-kinase mutant

mice were much more resistant than wild-type mice to

the formation of skin tumors by this means. This experi-

ment was performed on a mouse background, C57BL/6,

that is relatively resistant to papilloma formation, so overall

tumor numbers formed are low, even for the wild-type

mice.

DISCUSSION

A Physiological Role for Ras in the Regulation

of PI 3-Kinase by Growth Factors

The creation of mice lacking the ability of their p110a PI 3-

kinase catalytic subunit to interact with activated Ras

provides an opportunity to definitively address the signifi-

cance of this interaction in growth factor signaling both in

vivo and in vitro. In cultured mouse embryo fibroblasts,

loss of p110a binding to Ras strongly reduces PI 3-kinase

activation by EGF and FGF-2, but not by PDGF. This dif-

ferential requirement for Ras may reflect the fact that the

activated receptor for PDGF directly binds the p85 regula-

tory subunit of PI 3-kinase at the plasma membrane

(Kazlauskas and Cooper, 1989), whereas the others do

not. EGF receptor is thought to direct PI 3-kinase activa-

tion more indirectly, either via Gab1 and Grb2 or via

ErbB3 (Mattoon et al., 2004; Soltoff et al., 1994). In the

case of FGF-2, its receptor phosphorylates the docking

protein FRS2, which in turn binds Grb2 and Gab1 (Ong

et al., 2001). Where PI 3-kinase is recruited to receptor

complexes indirectly, it is possible that smaller numbers

of p110 molecules are activated, perhaps making a costi-

mulatory role for Ras binding more essential. On the other
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Figure 6. Disruption of the Interaction of

p110a with Ras Blocks Carcinogenesis

Driven by K-Ras

(A) Tumour nodules on the surface of the lungs

in K-Ras LA2 mice on wild-type and Pi3kca mu-

tant backgrounds. Note the appearance of just

one tumor nodule (�1 mm diameter) on the mu-

tant lung and several macroscopic nodules of

different sizes on the wild-type lung. The lower

panel shows quantitation of the tumors found in

three Pi3kca mutant and six wild-type K-Ras

LA2 mice at 120 days. Error bars shown are

standard errors of the mean for triplicate

samples.

(B) H&E staining of oncogenic K-Ras mouse

lungs. The arrows indicate small adenomatous

hyperproliferations seen in the lungs of Pi3kca

mutant mice. The large arrowhead indicates

a typical adenocarcinoma in a mouse with

wild-type Pi3kca.
hand, other considerations may also be involved, as insu-

lin signaling to PI 3-kinase, which involves IRS family

adaptors, does not appear to be majorly dependent on

Ras interaction with p110a. Another possible explanation

might be the extent to which particular growth factor

receptors use different isoforms of p110. Deletion of

p110a in mouse embryo fibroblasts results in more com-

plete inhibition of EGF than PDGF signaling to Akt (Zhao

et al., 2006). It has been suggested that this might reflect

an ability of PDGF, but not EGF, receptor to regulate

p110b, which is also expressed in these cells.

Very recently, mice have been made where a similar set

of mutations has been introduced into a different isoform

of PI 3-kinase, p110g, whose expression is largely re-

stricted to hematopoietic cells. This resulted in loss of ac-
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cumulation of PIP3 in neutrophils in response to chemoat-

tractants (Suire et al., 2006). In addition, flies with a similar

mutation introduced into Dp110 show greatly reduced

egg-laying ability and are small in size (Orme et al.,

2006). This suggests that blocking Ras interaction with

p110 can attenuate PI 3-kinase regulation in other sys-

tems as well.

Interaction with Ras has been shown to allosterically

activate PI 3-kinase via a change in the structure of the

catalytic pocket (Pacold et al., 2000), in a manner that is

synergistic with binding of p85 to pYXXM peptides

(Rodriguez-Viciana et al., 1996). By itself, the interaction

of Ras with p110 is insufficient to drive membrane translo-

cation of PI 3-kinase, a necessity for its activation (Suire

et al., 2002), suggesting that the ability of oncogenic



mutant Ras by itself to drive PI 3-kinase activation may be

dependent on low-level signaling input from receptor tyro-

sine kinases, especially EGF receptor family members

that respond to autocrine ligands produced in response

to activation of the Raf/ERK branch of Ras downstream

pathways (Schulze et al., 2001).

The phenotype of mice homozygous for the p110a RBD

mutation suggests that in vivo there is also a requirement

for the Ras/PI 3-kinase interaction for some growth factors

to signal correctly. Most obviously, there is a partial failure

and delay of development of the lymphatic system, result-

ing in the accumulation of chylous ascites in newborn

pups. This developmental phenotype is similar to that of

VEGF-C+/� mice (Karkkainen et al., 2004) and also to

some extent angiopoietin 2 knockout mice (Gale et al.,

2002). The sprouting of the first lymphatic vessels from

embryonic veins appears to be highly dependent on

VEGF-C signaling, with homozygous deletion of VEGF-C

resulting in embryonic edema from E12.5, complete lack

of lymphatic vasculature, and death in utero. The similarity

of the phenotype of the VEGF-C heterozygotes and p110a

RBD mutant homozygotes could suggest that failure of

Ras to engage p110a directly might result in vivo in

a roughly 50% reduction in the ability of VEGF-C to signal

to a critical downstream effector system, such as PI 3-

kinase/Akt. It has been demonstrated that VEGF-C pro-

motes survival and proliferation of lymphatic endothelial

cells in vitro and induces Akt and ERK activation (Makinen

et al., 2001b). VEGF-C signals through two receptor tyro-

sine kinases, VEGFR2 and VEGFR3, of which VEGFR3 is

critical for its role in control of lymphatic development

(Joukov et al., 1996; Makinen et al., 2001a, 2001b).

VEGFR3 makes a good candidate for a receptor that

might require Ras to signal to PI 3-kinase as, like EGFR

and FGFRs, it lacks good p85-binding motifs and presum-

ably must engage the pathway indirectly. However, it is

also possible that signaling through other lymphangio-

genic growth factors and their receptors, such as angio-

poeitin 2 and Tie2, could also be defective in the p110a

RBD mutant mice.

It is striking that one of several defects suffered by mice

deleted for the Pik3r1 gene, which encodes the PI 3-

kinase regulatory subunits p85a, p55a, and p50a, is the

formation of chylous ascites (Fruman et al., 2000). These

mice have reduced levels of p110a protein and lipid kinase

activity but show much more widespread problems, in-

cluding extensive liver necrosis and hypoglycaemia, indi-

cating the relatively selective nature of the impact on PI 3-

kinase signaling of disrupting the Ras/PI 3-kinase link.

However, in the animals reported here, in addition to the

effects on lymphatic development, it is possible that other

growth factor signaling pathways may be defective that

are not essential under the husbandry conditions em-

ployed. Moreover, the decreased size of these animals

may reflect defects in systemic growth regulation, al-

though at present it cannot be ruled out that it is an indirect

manifestation of the perinatal lymphatic development

defect.
The Importance of Ras Interaction with PI 3-Kinase

in Tumorigenesis

While the results discussed above clearly show that Ras

interaction with PI 3-kinase is needed for some normal

growth factor signaling, the ability of activated mutant

Ras to cause transformation in vitro and tumor formation

in vivo also requires PI 3-kinase p110a to have a functional

RBD. The striking effect of homozygous mutation of

p110a RBD on the ability of a sporadically activated single

D12 K-Ras allele expressed at endogenous levels to

cause lung tumor formation suggests that, at least in this

setting, oncogenic Ras is highly dependent on its ability

to stimulate PI 3-kinase directly in order to drive tumori-

genesis in vivo.

Hundreds of lung adenocarcinomas form in K-Ras LA2

mice by 4 months of age, resulting in death by 6 months

(Johnson et al., 2001). The rate of lung tumor formation

is cut by more than 95% by the introduction of point mu-

tations in p110a blocking its interaction with Ras. Nor-

mally, the adenocarcinomas in K-Ras LA2 mice show ev-

idence of Akt activation, suggesting that Ras is inducing

this effector pathway in the tumors. Very few tumors

form in the PI 3-kinase mutant animals, although they do

show significant areas similar to atypical adenomatous

hyperplasia (AAH), thought to be a premalignant condition

that may progress to adenocarcinoma (Nakahara et al.,

2001). The AAH-like lesions in the PI 3-kinase mutant

mice do not exhibit Akt activation. It appears likely that

these hyperplastic lesions fail to develop into tumors

due to defective Akt activation, resulting in increased rates

of apoptosis. In this manner the lung epithelial cells differ

from the embryonic fibroblasts derived from these mice,

where the major effect of the mutation of PI 3-kinase ap-

peared to be on cell proliferation rather than survival. We

have not been able to observe obvious signs of senes-

cence in the AAH lesions using b-galactosidase staining,

although this has been observed in a different K-Ras-

driven mouse lung cancer model (Collado et al., 2005).

The simplest explanation for the failure of tumors to de-

velop in the PI 3-kinase mutant mice is that lung epithelial

cells expressing activated Ras fail to activate Akt, which is

directly required for their proliferation and survival. Clones

of activated Ras-expressing epithelial cells thus fail to

grow beyond a limited size. However, it is also possible

that the defect is not entirely cell autonomous: the PI 3-

kinase mutant epithelial cells may be deficient in their in-

teraction with surrounding stroma. They could be unable

to induce angiogenesis, although the lesions may well be

too small to require new vasculature. It is also conceivable

that they have an altered interaction with the host immune

system. In each case these possible problems could be

caused either by defects in the activated Ras-expressing

epithelial cells themselves or in the surrounding host tis-

sues, which also carry the PI 3-kinase mutation, even

though they lack expression of activated Ras. The possi-

bility of defects in tumor neovascularization might be

raised by the deficiencies in the related lymphangiogene-

sis system in the PI 3-kinase mutants, although there is no
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indication that there is any developmental problem with

normal blood vessel formation in these mice. Defects in

lymphangiogenesis itself are very unlikely to account for

failure of primary tumors to develop, although the lym-

phatics are important for metastatic spread of established

tumors (Saharinen et al., 2004). In any case, the lymphatic

system is apparently normal in the lungs of the PI 3-kinase

mutant mice once they reach adulthood.

Study of the ability of exogenously introduced Ras to

transform immortalized fibroblasts fromnormaland PI 3-ki-

nase mutant mice in vitro suggests that there is at least

a major cell-autonomous component to the impact of PI

3-kinase RBD mutation on Ras-induced tumorigenesis.

This in vitro system also allows rapid study of the specificity

of the effect of this mutation on different oncogenic signal-

ing pathways. Like activated Ras, oncogenic mutant EGF

receptor requires Ras interaction with p110a to induce col-

ony formation in soft agar, but the ability of polyoma virus

middle T antigen to transform fibroblasts is not affected.

Polyoma middle T activates PI 3-kinase strongly via direct

binding to p85 via sites phosphorylated by c-Src (Whitman

et al., 1985), presumably without need for synergistic input

from Ras. We are also in the process of addressing the

specificity of the inhibitory effect of the p110a RBD muta-

tion on tumorigenesis in vivo for oncogenes other than Ras.

The results presented here prove that the direct interac-

tion of Ras with the catalytic subunit of type I PI 3-kinase is

important in both malignant and normal developmental

growth signaling. The strong reduction in Ras-induced

lung tumor formation when this binding is prevented sug-

gests that specific targeting of the interaction of Ras with

PI 3-kinase may have therapeutic value in the treatment of

tumors, such as lung, colon, and pancreatic carcinoma,

with high incidences of Ras mutation. In addition, since

adult mice lacking Ras binding to PI 3-kinase are appar-

ently healthy, drugs targeting this link might be expected

to be well tolerated.

EXPERIMENTAL PROCEDURES

Reagents

The murine p110a genomic clones (gm35 and gm45) were a kind gift

from Dr. Tom Roberts (Dana Farber Cancer Institute). Bovine p110a,

V12 H-Ras, V12 K-Ras, and Myc expression constructs were described

previously (Rodriguez-Viciana et al., 1997). EGF, PDGF-AB, and FGF2

were obtained from R&D systems. BrdU was purchased from Sigma.

The oncogenic K-Ras mouse strain (Kras-LA2) was from the MMHCC

mouse repository (NCI-Frederick). The ER:V12 H-Ras construct (Dajee

et al., 2002) was a kind gift from Dr. Paul Khavari (Stanford University).

Antibodies

The pan-ERK, phospho-ERK (E10) monoclonal, and phospho-Akt

(Ser473) antibodies were all purchased from Cell Signaling Technol-

ogy. The Pan-Ras (Ab-4) antibody was obtained from Calbiochem,

the p85 (06-195) antibody from Upstate, and the p110b (Sc-602) anti-

body from Santa Cruz. The antibody recognizing bovine p110a was

from Transduction Laboratories. The monoclonal hybridoma tubulin

(TAT-1), Akt, and GST antibodies were generated in-house. The

VEGFR-3 antibodies were from R&D Systems, the Cy3-conjugated

SMA antibody was from Sigma, and the PROX-1 antibody was

a kind gift from Dr. Tatiana Petrova. The mouse-specific p110a anti-
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body was a kind gift from Antonio Biliancio and Bart Vanhaesebroeck

(Ludwig Institute for Cancer Research, University College London). HA

antibody monoclonal antibody 12CA5 was from Abgent, and in vitro ki-

nase assays on HA-Akt immunoprecipitates were performed as in

Alessi et al. (1996).

Proliferation Assays

Cells were pulsed with BrdU for 1 hr, prior to trypsinization and fixation

in ethanol. FACS analysis was performed on a FACScalibur (Becton

Dickson).

PIP3 Immunocytochemistry

Wild-type and mutant MEFs cultured on coverslips were serum-

starved overnight and stimulated with EGF (50 ng/ml), FGF2 (20 ng/

ml), or PDGF (20 ng/ml) for 10 min. Reactions were stopped by wash-

ing the cells with cold TBS. Cells on glass coverslips were fixed with

4% formaldehyde and then permeabilized with 0.5% Triton X-100 in

TBS. Immunocytochemistry was performed using a Histostain-Plus

Kit (Invitrogen), according to the manufacturer’s protocol. PIP3 levels

were detected with mouse anti-PIP3 monoclonal antibody (Z-G345;

Echelon) diluted at 1:50 overnight at 4�C.

Whole-Mount Immunostaining

Tissues were fixed in 4% paraformaldehyde and used for whole-mount

immunofluorescence or immunoperoxidase staining. For immuno-

fluorescence, tissues were stained with goat anti-mouse VEGFR-3,

Cy3-conjugated anti-SMA, or rabbit anti-mouse PROX-1 antibodies.

Secondary antibodies were Alexa-conjugated (Molecular Probes). For

immunoperoxidase staining, tissues were incubated with biotinylated

goat anti-mouse VEGFR-3 antibody followed by Vectastain Elite

ABC reagent (Vector laboratories). Peroxidase activity was detected

with 3,30-diaminobenzidine (Sigma).

Cell Culture and Soft Agar Assays

MEFs of the three genetic backgrounds were isolated following stan-

dard protocol and maintained in DMEM supplemented with 10% fetal

bovine serum. Phoenix cells were used to generate ecotropic viruses.

MEFs were infected with filtered (pore size 0.45 mm) viral supernatant,

supplemented with 8 mg/ml polybrene. Primary MEFs were immortal-

ized by infecting with SV40 T antigen. Selected pools of immortalized

cells were infected with H-rasV12 pBABE puro or empty pBABE puro

as control. Twenty-four hours after infection, cells were selected with

1 mg/ml puromycin for at least 7 days. To monitor the capacity of MEFs

to grow in semi-solid medium in vitro, cells were transferred to 2 ml

complete DMEM containing 0.35% low-melting agarose. 1 3 103 cells

were seeded in duplicate into 60 mm dishes containing a 2 ml layer of

solidified 0.6% agar in complete medium. Colonies were stained 2

weeks later with Giemsa stain.

Supplemental Data

Supplemental Data include Experimental Procedures and five figures

and can be found with this article online at http://www.cell.com/cgi/

content/full/129/5/957/DC1/.
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