132 research outputs found

    An Analysis of the Effectiveness of the Home Mortgage Disclosure Act of 1975

    Get PDF

    Space-time clustering of childhood central nervous system tumours in Yorkshire, UK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We specifically tested the aetiological hypothesis that a factor influencing geographical or temporal heterogeneity of childhood central nervous system (CNS) tumour incidence was related to exposure to a transient environmental agent.</p> <p>Methods</p> <p>Information was extracted on individuals aged 0-14 years, diagnosed with a CNS tumour between the 1st January 1974 and 31st December 2006 from the Yorkshire Specialist Register of Cancer in Children and Young People. Ordnance Survey eight-digit grid references were allocated to each case with respect to addresses at the time of birth and the time of diagnosis, locating each address to within 0.1 km. The following diagnostic groups were specified <it>a priori </it>for analysis: ependymoma; astrocytoma; primitive neuroectodermal tumours (PNETs); other gliomas; total CNS tumours. We applied the <it>K</it>-function method for testing global space-time clustering using fixed geographical distance thresholds. Tests were repeated using variable nearest neighbour (NN) thresholds.</p> <p>Results</p> <p>There was statistically significant global space-time clustering for PNETs only, based on time and place of diagnosis (<it>P </it>= 0.03 and 0.01 using the fixed geographical distance and the variable NN threshold versions of the <it>K</it>-function method respectively).</p> <p>Conclusions</p> <p>There was some evidence for a transient environmental component to the aetiology of PNETs. However, a possible role for chance cannot be excluded.</p

    Allergy and Risk of Childhood Leukaemia: Results from the UKCCS

    Get PDF
    We investigated the relationship between childhood leukaemia and preceding history of allergy. A nationwide case-control study of childhood cancers was conducted in the United Kingdom with population-based sampling of cases (n = 839) and controls (n = 1,337), matched on age, sex and region of residence. Information about clinically diagnosed allergies was obtained from primary care records. More than a third of subjects had at least one allergy diagnosed prior to leukaemia diagnosis (cases) or pseudo-diagnosis (controls). For both total acute lymphoblastic leukaemia (ALL) and common-ALL/precursor B-cell ALL (c-ALL), a history of eczema was associated with a 30% significant reduction in risk: the odds ratios (OR) and 95% confidence intervals (CI) were 0.70 (0.51-0.97) and 0.68 (0.48-0.98), respectively. Similar associations were observed for hayfever (OR = 0.47; 95% CI: 0.26-0.85 and OR = 0.62; 95% CI: 0.33-1.16 for ALL and c-ALL, respectively). No such patterns were seen either for asthma and ALL, or for any allergy and acute myeloid leukaemia. A comparative analysis of primary care records with parents recall of allergy revealed only moderate agreement with contemporaneous clinical diagnoses for both cases and controls - confirming the unreliability of parental report at interview. Our finding of a reciprocal relationship between allergy and ALL in children is compatible with the hypothesis that a dysregulated immune response is a critical determinant of childhood ALL

    UK-born Pakistani-origin infants are relatively more adipose than white British infants: findings from 8704 mother-offspring pairs in the Born-in-Bradford prospective birth cohort

    Get PDF
    Background: Previous studies have shown markedly lower birth weight among infants of South Asian origin compared with those of White European origin. Whether such differences mask greater adiposity in South Asian infants and whether they persist across generations in contemporary UK populations is unclear. Our aim was to compare birth weight, skinfold thickness and cord leptin between Pakistani and White British infants and to investigate the explanatory factors, including parental and grandparental birthplace. Methods: We examined the differences in birth weight and skinfold thickness between 4649 Pakistani and 4055 White British infants born at term in the same UK maternity unit and compared cord leptin in a subgroup of 775 Pakistani and 612 White British infants. Results: Pakistani infants were lighter (adjusted mean difference −234 g 95% CI −258 to −210) and were smaller in both subscapular and triceps skinfold measurements. The differences for subscapular and triceps skinfold thickness (mean z-score difference −0.27 95% CI −0.34 to −0.20 and −0.23 95% CI −0.30 to −0.16, respectively) were smaller than the difference in birth weight (mean z-score difference −0.52 95% CI −0.58 to −0.47) and attenuated to the null with adjustment for birth weight (0.03 95% CI −0.03 to 0.09 and −0.01 95% CI −0.08 to 0.05, respectively). Cord leptin concentration (indicator of fat mass) was similar in Pakistani and White British infants without adjustment for birth weight, but with adjustment became 30% higher (95% CI 17% to 44%) among Pakistani infants compared with White British infants. The magnitudes of difference did not differ by generation. Conclusions: Despite being markedly lighter, Pakistani infants had similar skinfold thicknesses and greater total fat mass, as indicated by cord leptin, for a given birth weight than White British infants. Any efforts to reduce ethnic inequalities in birth weight need to consider differences in adiposity and the possibility that increasing birth weight in South Asian infants might inadvertently worsen health by increasing relative adiposity

    Coevolution of Male and Female Genital Morphology in Waterfowl

    Get PDF
    Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–>40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations

    Telomeric protein TRF2 protects Holliday junctions with telomeric arms from displacement by the Werner syndrome helicase

    Get PDF
    WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres

    Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2

    Get PDF
    Enteropathy-associated T cell lymphoma (EATL) is a lethal, and the most common, neoplastic complication of celiac disease. Here, we defined the genetic landscape of EATL through whole-exome sequencing of 69 EATL tumors. SETD2 was the most frequently silenced gene in EATL (32% of cases). The JAK-STAT pathway was the most frequently mutated pathway, with frequent mutations in STAT5B as well as JAK1 , JAK3 , STAT3 , and SOCS1 . We also identified mutations in KRAS , TP53 , and TERT . Type I EATL and type II EATL (monomorphic epitheliotropic intestinal T cell lymphoma) had highly overlapping genetic alterations indicating shared mechanisms underlying their pathogenesis. We modeled the effects of SETD2 loss in vivo by developing a T cell–specific knockout mouse. These mice manifested an expansion of γδ T cells, indicating novel roles for SETD2 in T cell development and lymphomagenesis. Our data render the most comprehensive genetic portrait yet of this uncommon but lethal disease and may inform future classification schemes

    Inherited variation in immune genes and pathways and glioblastoma risk

    Get PDF
    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel–Haenzel P values = 1 × 10−5 to 4 × 10−3), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion–extravasation–migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk

    Intra- and Inter-clade Cross-reactivity by HIV-1 Gag Specific T-Cells Reveals Exclusive and Commonly Targeted Regions: Implications for Current Vaccine Trials

    Get PDF
    The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities

    GM-CSF Production Allows the Identification of Immunoprevalent Antigens Recognized by Human CD4+ T Cells Following Smallpox Vaccination

    Get PDF
    The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a “T cell–driven” methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens
    corecore