13 research outputs found

    Methylene blue associated with maghemite nanoparticles has antitumor activity in breast and ovarian carcinoma cell lines

    Get PDF
    Background: Cancer constitutes group of diseases responsible for the second largest cause of global death, and it is currently considered one of the main public health concerns nowadays. Early diagnosis associated with the best choice of therapeutic strategy, is essential to achieve success in cancer treatment. In women, breast cancer is the second most common type, whereas ovarian cancer has the highest lethality when compared to other neoplasms of the female genital system. The present work, therefore, proposes the association of methylene blue with citrate-coated maghemite nanoparticles (MAGCIT–MB) as a nanocomplex for the treatment of breast and ovarian cancer. Results: In vitro studies showed that T-47D and A2780 cancer cell lines underwent a significant reduction in cell viability after treatment with MAGCIT–MB, an event not observed in non-tumor (HNTMC and HUVEC) cells and MDA-MB-231, a triple-negative breast cancer cell line. Flow cytometry experiments suggest that the main mechanism of endocytosis involved in the interiorization of MAGCIT–MB is the clathrin pathway, whereas both late apoptosis and necrosis are the main types of cell death caused by the nanocomplex. Scanning electron microscopy and light microscopy reveal significant changes in the cell morphology. Quantification of reactive oxygen species confirmed the MAGCIT–MB cytotoxic mechanism and its importance for the treatment of tumor cells. The lower cytotoxicity of individual solution of maghemite nanoparticles with citrate (MAGCIT) and free methylene blue (MB) shows that their association in the nanocomplex is responsible for its enhanced therapeutic potential in the treatment of breast and ovarian cancer in vitro. Conclusions: Treatment with MAGCIT–MB induces the death of cancer cells but not normal cells. These results highlight the importance of the maghemite core for drug delivery and for increasing methylene blue activity, aiming at the treatment of breast and ovarian cancer

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Filmes poliméricos ultrafinos produzidos pela técnica de automontagem: preparação, propriedades e aplicações

    No full text
    The self-assembly technique is a powerful tool to fabricate ultrathin films from organic compounds aiming at technological applications in molecular electronics. This relatively new approach allows molecularly flat films to be obtained on a simple and cheap fashion from various types of material, including polyelectrolytes, conducting polymers, dyes and proteins. The resulting multilayer films may be fabricated according to specific requirements since their structural and physical properties may be controlled at the molecular level. In this review we shall comment upon the evolution of preparation methods for ultrathin films, the process of adsorption and their main properties, as well as some examples of technological applications of layer-by-layer or self-assembled films

    Modelling the quenching effect of chloroaluminum phthalocyanine and graphene oxide interactions:implications for phototherapeutic applications

    No full text
    Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising candidates for cancer treatment and their efficiency can be further enhanced by using a combination of both. While chloroaluminum phthalocyanine (AlClPc) has been studied extensively as a photosensitizer in PDT, nanographene oxide (nGO) has shown promise in PTT due to its high absorption of near-infrared radiation. In this work, we investigate the energy transport between AlClPc and nGO for their combined use in phototherapies. We use density functional theory (DFT) and time-dependent DFT to analyze the electronic structure of AlClPc and its interaction with nGO. Based on experimental parameters, we model the system's morphology and implement it in Kinetic Monte Carlo (KMC) simulations to investigate the energy transfer mechanism between the compounds. Our KMC calculations show that the experimentally observed fluorescence quenching requires modeling both the energy transfer from dyes to nGO and a molecular aggregation model. Our results provide insights into the underlying mechanisms responsible for the fluorescence quenching observed in AlClPc/nGO aggregates, which could impact the efficacy of photodynamic therapy. Studying energy transfer between chloroaluminum phthalocyanine and nanographene oxide for combined phototherapies, this work reveals the role of molecular aggregation on fluorescence quenching using DFT and KMC simulations

    Molecular dynamics studies of amylose plasticized with Brazilian Cerrado oils: part I

    Get PDF
    <div><p>Abstract Biodegradable polymers have become part of the realm of polymer science with specially when associated to renewable sources. Unraveling the plasticizer effect of natural occurring fatty acids in the Brazilian Cerrado on amylose oligomers was aimed in this work in an aqueous environment. Since the interactions within a material are of extreme importance to its molecular behavior, the main focus was directed to the molecular interactions whether intra or intermolecular type. Molecular Mechanics and Dynamics were carried out to shed light on this issue. The simulation results suggest the fatty acids could perform as efficient plasticizers for more complex polysaccharides such as starch. It also highlights the importance the solvation on the system stabilization, thus contributing to a clearer understanding of the chemical interactions role on plasticization. Our results provide a basis for simulating more complex systems such as a clay-mineral which will culminate in the parameterization for mesoscale studies.</p></div

    Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model

    No full text
    Abstract Background In the photodynamic therapy (PDT), the photosensitizer absorbs light and transfers the energy of the excited state to the oxygen in the cell environment producing reactive oxygen species (ROS), that in its turn, may cause cell damage. In the photothermal therapy (PTT), light also is responsible for activating the photothermal agent, which converts the absorbed energy in heat. Graphene oxide is a carbon-based material that presents photothermal activity. Its physical properties allow the association with the photosensitizer methylene blue and consequently the production of ROS when submitted to light irradiation. Therefore, the association between nanographene oxide and methylene blue could represent a strategy to enhance therapeutic actions. In this work, we report the nanographene oxide-methylene blue platform (NanoGO-MB) used to promote tumor ablation in combination with photodynamic and photothermal therapies against a syngeneic orthotopic murine breast cancer model. Results In vitro, NanoGO-MB presented 50% of the reactive oxygen species production compared to the free MB after LED light irradiation, and a temperature increase of ~ 40 °C followed by laser irradiation. On cells, the ROS production by the nanoplatform displayed higher values in tumor than normal cells. In vivo assays demonstrated a synergistic effect obtained by the combined PDT/PTT therapies using NanoGO-MB, which promoted complete tumor ablation in 5/5 animals. Up to 30 days after the last treatment, there was no tumor regrowth compared with only PDT or PTT groups, which displayed tumoral bioluminescence 63-fold higher than the combined treatment group. Histological studies confirmed that the combined therapies were able to prevent tumor regrowth and liver, lung and spleen metastasis. In addition, low systemic toxicity was observed in pathologic examinations of liver, spleen, lungs, and kidneys. Conclusions The treatment with combined PDT/PTT therapies using NanoGO-MB induced more toxicity on breast carcinoma cells than on normal cells. In vivo, the combined therapies promoted complete tumor ablation and metastasis prevention while only PDT or PTT were unable to stop tumor development. The results show the potential of NanoGO-MB in combination with the phototherapies in the treatment of the breast cancer and metastasis prevention

    A simple visible light photo-assisted method for assembling and curing multilayer GO thin films

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORA simple and efficient method for deposition of reduced graphene oxide (RGO) thin firms onto arbitrary substrates is described. The present protocol consists in the application of radial compression to a thin layer of graphene oxide (GO) formed at the air liquid interface of an ammoniacal dispersion of graphene oxide by continuous irradiation with visible light, that drives both the formation and curing of the film. Both infrared and near infrared luminescence spectroscopies were used for the proposition of a chemical mechanism in which the in situ singlet oxygen Delta O-1(2), generated by the photosensitization of molecular oxygen to visible light, initiates the formation and curing of the film. The GO and RGO films display Raman spectral signatures typical of graphene - based materials, with thickness of ca. 20 nm as evaluated by atomic force microscopy. The deposited films exhibited good transparency to visible light (max. 85%; 550 +/- 2 nm), electrical resistivity equals to 14 +/- 0.02 0 Omega m, sheet resistance equals to 5 k Omega sq(-1) with associated charge carrier mobility of 200 cm(2)/V s. (C) 2015 Elsevier B.V. All rights reserved.A simple and efficient method for deposition of reduced graphene oxide (RGO) thin firms onto arbitrary substrates is described. The present protocol consists in the application of radial compression to a thin layer of graphene oxide (GO) formed at the air liquid interface of an ammoniacal dispersion of graphene oxide by continuous irradiation with visible light, that drives both the formation and curing of the film. Both infrared and near infrared luminescence spectroscopies were used for the proposition of a chemical mechanism in which the in situ singlet oxygen Delta O-1(2), generated by the photosensitization of molecular oxygen to visible light, initiates the formation and curing of the film. The GO and RGO films display Raman spectral signatures typical of graphene - based materials, with thickness of ca. 20 nm as evaluated by atomic force microscopy. The deposited films exhibited good transparency to visible light (max. 85%550 +/- 2 nm), electrical resistivity equals to 14 +/- 0.02 0 Omega m, sheet resistance equals to 5 k Omega sq(-1) with associated charge carrier mobility of 200 cm(2)/V s.165125133FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP [2011/17184-1, 2013/19420-0, 2015/06064-6]2011/17184-12013/19420-02015/06064-6Sem informaçãoThis work was supported in part by FAPESP 2011/17184-1, 2013/19420-0 and 2015/06064-6, Capes PNPDSpecial thanks to C. R. Carlos, D. B. Rezende (IQ-USP), Dr. C. Ozaki (SSSP), Arthur, A. A. P., Pinto J. Furtado and A. Inglez (PUC-SP)

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore