121 research outputs found

    Total Synthesis of a Dimeric Thymol Derivative Isolated from Arnica sachalinensis

    Get PDF
    The total synthesis of a dimeric thymol derivative (thymarnicol) isolated from Arnica sachalinensis was accomplished in 6 steps. A key biomimetic Diels–Alder dimerization was found to occur at ambient temperature and the final oxidative cyclization occurs when the substrate is exposed to air and visible light. These results indicate that this natural product is likely the result of spontaneous (non‐enzyme‐mediated) reactivity

    Pex11p Plays a Primary Role in Medium-Chain Fatty Acid Oxidation, a Process That Affects Peroxisome Number and Size in Saccharomyces cerevisiae

    Get PDF
    The Saccharomyces cerevisiae peroxisomal membrane protein Pex11p has previously been implicated in peroxisome proliferation based on morphological observations of PEX11 mutant cells. Pex11p-deficient cells fail to increase peroxisome number in response to growth on fatty acids and instead accumulate a few giant peroxisomes. We report that mutants deficient in genes required for medium-chain fatty acid (MCFA) β-oxidation display the same phenotype as Pex11p-deficient cells. Upon closer inspection, we found that Pex11p is required for MCFA β-oxidation. Disruption of the PEX11 gene results in impaired formation of MCFA-CoA esters as measured in intact cells, whereas their formation is normal in cell lysates. The sole S. cerevisiae MCFA-CoA synthetase (Faa2p) remains properly localized to the inner leaflet of the peroxisomal membrane in PEX11 mutant cells. Therefore, the in vivo latency of MCFA activation observed in Pex11p-deficient cells suggests that Pex11p provides Faa2p with substrate. When PEX11 mutant cells are shifted from glucose to oleate-containing medium, we observed an immediate deficiency in β-oxidation of MCFAs whereas giant peroxisomes and a failure to increase peroxisome abundance only became apparent much later. Our observations suggest that the MCFA oxidation pathway regulates the level of a signaling molecule that modulates the number of peroxisomal structures in a cell

    Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death

    Get PDF
    NoExtracts of Erythrina addisoniae are frequently used in the traditional medicine of Western Africa, but insufficient information about active compounds is available. From the stem bark of E. addisoniae, three (1, 2, 4) and three known (3, 5, 6) flavanones were isolated: addisoniaflavanones I and II, containing either a 2″,3″-epoxyprenyl moiety (1) or a 2″,3″-dihydroxyprenyl moiety (2) were shown to be highly toxic (MTT assay: EC50 values of 5.25 ± 0.7 and 8.5 ± 1.3 μM, respectively) to H4IIE hepatoma cells. The cytotoxic potential of the other isolated flavanones was weaker (range of EC50 values between 15 and >100 μM). Toxic effects of addisoniaflavanone I and II were detectable after 3 h (MTT assay). Both compounds induced an apoptotic cell death (caspase-3/7 activation, nuclear fragmentation) in the hepatoma cells and, at high concentrations, also necrosis (membrane disruption: ethidium bromide staining). Formation of DNA strand breaks was not detectable after incubation with these compounds (comet assay). In conclusion, the prenylated flavanones addisoniaflavanones I and II may be of interest for pharmacological purposes due to their high cytotoxic and pro-apoptotic potential against hepatoma cells

    Bioactive secondary metabolites from Schizogyne sericea (Asteraceae) endemic to Canary Islands

    No full text
    Schizogyne sericea (Asteraceae) is a species endemic to the Canary Islands and traditionally employed as analgesic, astringent, anti-inflammatory and vulnerary. A comprehensive phytochemical investigation was conducted on the flowering aerial parts by analyzing both essential oil constituents and polar compounds. The essential oil was dominated by p-cymene, with the noteworthy occurrence of β-pinene and thymol esters. From the ethanolic extract eight compounds were isolated and structurally elucidated. Essential oil, polar fractions and isolates (2), (4) and (5) were separately in vitro assayed for antiproliferative activity on human tumor cell lines (A375, MDA-MB 231, HCT 116) by MTT assay, for antioxidant potential by DPPH, ABTS and FRAP assays, and for antimicrobial activity by the agar disc diffusion method. Results revealed that essential oil and compounds 1 and 2 exert a strong inhibition on tumor cells, in some cases higher than that of cisplatin. Fractions containing thymol derivatives (1 and 2) and compounds 4 and 5 displayed antioxidant activity comparable to that of Trolox, making S. sericea extract an interesting natural product with potential applications as preservative or in the treatment of diseases in which oxidative stress plays an important role

    The peroxisome: still a mysterious organelle

    Get PDF
    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed
    corecore