9 research outputs found

    Implication de la protéase calpaïne 3 dans la régulation de l’activité transcriptionnelle du facteur MyoD au cours du processus de myogénèse

    No full text
    Calpaïne 3 est une cystéine protéase retrouvée principalement au niveau du tissu musculaire. Cette enzyme joue un rôle clef dans le maintient de l’intégrité des fibres musculaires. En effet, des mutations au niveau du gène de calpaïne 3 ont été identifiées comme étant responsables d’une dystrophie musculaire autosomale récessive, la LGMD2A (Limb-girdle muscular dystrophy type 2A), caractérisée par une atrophie progressive des muscles des ceintures scapulaires et pelviennes. Nos travaux montrent que calpaïne 3 inhibe l’activité transcriptionnelle de MyoD. Ce facteur de transcription myogénique (MRF) joue un rôle central dans le contrôle de la myogenèse aussi bien au cours du développement embryonnaire que chez un individu adulte au cours du processus de régénération musculaire. Cette diminution d’activité transcriptionnelle a lieu aussi bien dans des cellules myoblastiques (C2C12) que fibroblastiques (C3H10T1/2). Par contre calpaïne 3 ne modifie pas l’activité transcriptionnelle des autres MRFs (Myf5, myogénine ou MRF4). Nous avons pu montrer que calpaïne 3 affecte spécifiquement l’activité transcriptionnelle de MyoD en entraînant une diminution de son niveau protéique (Western-blot, microscopie confocale), sans affecter son niveau d’ARNm (RT-QPCR). De plus, des expériences de détermination de la demi-vie protéique ont pu montrer que calpaïne 3 intervenait sur la dégradation protéique de MyoD. Des expériences sont en cours afin de déterminer si calpaïne 3 hydrolyse directement ou non le facteur MyoD. Nos travaux montrent que l’hydrolyse de MyoD induite par calpaïne 3 représente une voie parallèle à celle du système protéolytique protéasome ubiquitine-dépendant connu pour être impliqué dans sa dégradation. Nous avons également montré qu’une modification de l’expression de calpaïne 3, soit par surexpression soit par inhibition avec des siRNA spécifiques, entraîne une perturbation du processus de différenciation myogénique. Cet effet a été plus particulièrement étudié au sein d’une sous-population de cellules qui reste indifférenciée dans les cellules C2C12 induites en différenciation. Ces cellules, appelées cellules de réserve, s’apparentent aux cellules satellites intervenant dans la régénération musculaire. Nous avons montré que calpaïne 3 participe à la régulation du nombre des cellules de réserve au cours de la différenciation des cellules C2C12. Ce rôle de calpaïne 3 pourrait être lié à son intervention dans la dégradation du facteur MyoD. L’ensemble de ces résultats suggère ainsi que calpaïne 3 pourrait jouer un rôle in vivo dans le maintien d’un stock de cellules satellites au cours de la régénération musculaire.Calpain 3 (CAPN3) is a calcium-dependent cysteine protease mainly expressed in skeletal muscle. This protease plays a key role in maintaining the integrity of muscular fibers. Indeed, mutations in CAPN3 encoding gene cause limb-girdle muscular dystrophy type 2A, an autosomal recessive muscular dystrophy characterized by progressive atrophy and weakness of the proximal limb muscles. Our work reveals an inhibitory effect of CAPN3 directed against the myogenic regulatory factor (MRF), MyoD. We have shown that CAPN3 inhibits the transcriptional activity of MyoD either in myoblastic cells (C2C12 cells) or in fibroblastic ones (C3H10T1/2 cells). On the contrary, no variation in the transcriptional activity of the other members of the MRFs family (Myf5, myogenin, or MRF4) was observed. CAPN3 affects the transcriptional activity of MyoD by decreasing the quantity of the endogenous protein MyoD (Western-blots, confocal microscopy experiments), without affecting its mRNA level (RT-QPCR). Moreover, half-life determination experiments showed that CAPN3 induce MyoD degradation acts on MyoD by a proteic degradation. Experiments are in progress to determine whether CAPN3 acts directly or not on MyoD. Furthermore, the inhibitory effect of CAPN3 on MyoD is independent of the ubiquitin-proteasome proteolytic pathway that is known to play a role during MyoD degradation. Indeed, MyoD mutants resistant to proteolytic degradation by the proteasome are sensitive to CAPN3 action. Interestingly, we have shown that modifications in CAPN3 expression, induced by overexpression or downregulation (siRNA), cause perturbations in myogenic differentiation. CAPN3 appears as a regulator of myogenic differentiation by modulating the quantity of MyoD available for progressing in differentiation. In addition, we have highlighted a potential role of CAPN3 in maintaining a pool of reserve cells along C2C12 cells differentiation. These cells share numbers of similarities with satellite cells present in the adult muscles. In conclusion, we have shown that CAPN3 acts as a regulatory molecule on myogenic differentiation, and probably have implications in the area of regeneration

    Implication de la protéase calpaïne 3 dans la régulation de l’activité transcriptionnelle du facteur MyoD au cours du processus de myogénèse

    No full text
    Calpaïne 3 est une cystéine protéase retrouvée principalement au niveau du tissu musculaire. Cette enzyme joue un rôle clef dans le maintient de l’intégrité des fibres musculaires. En effet, des mutations au niveau du gène de calpaïne 3 ont été identifiées comme étant responsables d’une dystrophie musculaire autosomale récessive, la LGMD2A (Limb-girdle muscular dystrophy type 2A), caractérisée par une atrophie progressive des muscles des ceintures scapulaires et pelviennes. Nos travaux montrent que calpaïne 3 inhibe l’activité transcriptionnelle de MyoD. Ce facteur de transcription myogénique (MRF) joue un rôle central dans le contrôle de la myogenèse aussi bien au cours du développement embryonnaire que chez un individu adulte au cours du processus de régénération musculaire. Cette diminution d’activité transcriptionnelle a lieu aussi bien dans des cellules myoblastiques (C2C12) que fibroblastiques (C3H10T1/2). Par contre calpaïne 3 ne modifie pas l’activité transcriptionnelle des autres MRFs (Myf5, myogénine ou MRF4). Nous avons pu montrer que calpaïne 3 affecte spécifiquement l’activité transcriptionnelle de MyoD en entraînant une diminution de son niveau protéique (Western-blot, microscopie confocale), sans affecter son niveau d’ARNm (RT-QPCR). De plus, des expériences de détermination de la demi-vie protéique ont pu montrer que calpaïne 3 intervenait sur la dégradation protéique de MyoD. Des expériences sont en cours afin de déterminer si calpaïne 3 hydrolyse directement ou non le facteur MyoD. Nos travaux montrent que l’hydrolyse de MyoD induite par calpaïne 3 représente une voie parallèle à celle du système protéolytique protéasome ubiquitine-dépendant connu pour être impliqué dans sa dégradation. Nous avons également montré qu’une modification de l’expression de calpaïne 3, soit par surexpression soit par inhibition avec des siRNA spécifiques, entraîne une perturbation du processus de différenciation myogénique. Cet effet a été plus particulièrement étudié au sein d’une sous-population de cellules qui reste indifférenciée dans les cellules C2C12 induites en différenciation. Ces cellules, appelées cellules de réserve, s’apparentent aux cellules satellites intervenant dans la régénération musculaire. Nous avons montré que calpaïne 3 participe à la régulation du nombre des cellules de réserve au cours de la différenciation des cellules C2C12. Ce rôle de calpaïne 3 pourrait être lié à son intervention dans la dégradation du facteur MyoD. L’ensemble de ces résultats suggère ainsi que calpaïne 3 pourrait jouer un rôle in vivo dans le maintien d’un stock de cellules satellites au cours de la régénération musculaire.Calpain 3 (CAPN3) is a calcium-dependent cysteine protease mainly expressed in skeletal muscle. This protease plays a key role in maintaining the integrity of muscular fibers. Indeed, mutations in CAPN3 encoding gene cause limb-girdle muscular dystrophy type 2A, an autosomal recessive muscular dystrophy characterized by progressive atrophy and weakness of the proximal limb muscles. Our work reveals an inhibitory effect of CAPN3 directed against the myogenic regulatory factor (MRF), MyoD. We have shown that CAPN3 inhibits the transcriptional activity of MyoD either in myoblastic cells (C2C12 cells) or in fibroblastic ones (C3H10T1/2 cells). On the contrary, no variation in the transcriptional activity of the other members of the MRFs family (Myf5, myogenin, or MRF4) was observed. CAPN3 affects the transcriptional activity of MyoD by decreasing the quantity of the endogenous protein MyoD (Western-blots, confocal microscopy experiments), without affecting its mRNA level (RT-QPCR). Moreover, half-life determination experiments showed that CAPN3 induce MyoD degradation acts on MyoD by a proteic degradation. Experiments are in progress to determine whether CAPN3 acts directly or not on MyoD. Furthermore, the inhibitory effect of CAPN3 on MyoD is independent of the ubiquitin-proteasome proteolytic pathway that is known to play a role during MyoD degradation. Indeed, MyoD mutants resistant to proteolytic degradation by the proteasome are sensitive to CAPN3 action. Interestingly, we have shown that modifications in CAPN3 expression, induced by overexpression or downregulation (siRNA), cause perturbations in myogenic differentiation. CAPN3 appears as a regulator of myogenic differentiation by modulating the quantity of MyoD available for progressing in differentiation. In addition, we have highlighted a potential role of CAPN3 in maintaining a pool of reserve cells along C2C12 cells differentiation. These cells share numbers of similarities with satellite cells present in the adult muscles. In conclusion, we have shown that CAPN3 acts as a regulatory molecule on myogenic differentiation, and probably have implications in the area of regeneration

    Implication de la protéase calpaïne 3 dans la régulation de l'activité transcriptionnelle du facteur MyoD au cours du processus de myogénèse

    No full text
    Calpaïne 3 est une cystéine protéase retrouvée principalement au niveau du tissu musculaire. Cette enzyme joue un rôle clef dans le maintient de l intégrité des fibres musculaires. En effet, des mutations au niveau du gène de calpaïne 3 ont été identifiées comme étant responsables d une dystrophie musculaire autosomale récessive, la LGMD2A (Limb-girdle muscular dystrophy type 2A), caractérisée par une atrophie progressive des muscles des ceintures scapulaires et pelviennes. Nos travaux montrent que calpaïne 3 inhibe l activité transcriptionnelle de MyoD. Ce facteur de transcription myogénique (MRF) joue un rôle central dans le contrôle de la myogenèse aussi bien au cours du développement embryonnaire que chez un individu adulte au cours du processus de régénération musculaire. Cette diminution d activité transcriptionnelle a lieu aussi bien dans des cellules myoblastiques (C2C12) que fibroblastiques (C3H10T1/2). Par contre calpaïne 3 ne modifie pas l activité transcriptionnelle des autres MRFs (Myf5, myogénine ou MRF4). Nous avons pu montrer que calpaïne 3 affecte spécifiquement l activité transcriptionnelle de MyoD en entraînant une diminution de son niveau protéique (Western-blot, microscopie confocale), sans affecter son niveau d ARNm (RT-QPCR). De plus, des expériences de détermination de la demi-vie protéique ont pu montrer que calpaïne 3 intervenait sur la dégradation protéique de MyoD. Des expériences sont en cours afin de déterminer si calpaïne 3 hydrolyse directement ou non le facteur MyoD. Nos travaux montrent que l hydrolyse de MyoD induite par calpaïne 3 représente une voie parallèle à celle du système protéolytique protéasome ubiquitine-dépendant connu pour être impliqué dans sa dégradation. Nous avons également montré qu une modification de l expression de calpaïne 3, soit par surexpression soit par inhibition avec des siRNA spécifiques, entraîne une perturbation du processus de différenciation myogénique. Cet effet a été plus particulièrement étudié au sein d une sous-population de cellules qui reste indifférenciée dans les cellules C2C12 induites en différenciation. Ces cellules, appelées cellules de réserve, s apparentent aux cellules satellites intervenant dans la régénération musculaire. Nous avons montré que calpaïne 3 participe à la régulation du nombre des cellules de réserve au cours de la différenciation des cellules C2C12. Ce rôle de calpaïne 3 pourrait être lié à son intervention dans la dégradation du facteur MyoD. L ensemble de ces résultats suggère ainsi que calpaïne 3 pourrait jouer un rôle in vivo dans le maintien d un stock de cellules satellites au cours de la régénération musculaire.Calpain 3 (CAPN3) is a calcium-dependent cysteine protease mainly expressed in skeletal muscle. This protease plays a key role in maintaining the integrity of muscular fibers. Indeed, mutations in CAPN3 encoding gene cause limb-girdle muscular dystrophy type 2A, an autosomal recessive muscular dystrophy characterized by progressive atrophy and weakness of the proximal limb muscles. Our work reveals an inhibitory effect of CAPN3 directed against the myogenic regulatory factor (MRF), MyoD. We have shown that CAPN3 inhibits the transcriptional activity of MyoD either in myoblastic cells (C2C12 cells) or in fibroblastic ones (C3H10T1/2 cells). On the contrary, no variation in the transcriptional activity of the other members of the MRFs family (Myf5, myogenin, or MRF4) was observed. CAPN3 affects the transcriptional activity of MyoD by decreasing the quantity of the endogenous protein MyoD (Western-blots, confocal microscopy experiments), without affecting its mRNA level (RT-QPCR). Moreover, half-life determination experiments showed that CAPN3 induce MyoD degradation acts on MyoD by a proteic degradation. Experiments are in progress to determine whether CAPN3 acts directly or not on MyoD. Furthermore, the inhibitory effect of CAPN3 on MyoD is independent of the ubiquitin-proteasome proteolytic pathway that is known to play a role during MyoD degradation. Indeed, MyoD mutants resistant to proteolytic degradation by the proteasome are sensitive to CAPN3 action. Interestingly, we have shown that modifications in CAPN3 expression, induced by overexpression or downregulation (siRNA), cause perturbations in myogenic differentiation. CAPN3 appears as a regulator of myogenic differentiation by modulating the quantity of MyoD available for progressing in differentiation. In addition, we have highlighted a potential role of CAPN3 in maintaining a pool of reserve cells along C2C12 cells differentiation. These cells share numbers of similarities with satellite cells present in the adult muscles. In conclusion, we have shown that CAPN3 acts as a regulatory molecule on myogenic differentiation, and probably have implications in the area of regeneration.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration

    Get PDF
    Skeletal muscle satellite cells (SCs) are Pax7+ myogenic stem cells that reside between the basal lamina and the plasmalemma of the myofiber. In mature muscles, SCs are typically quiescent, but can be activated in response to muscle injury. Depending on the magnitude of tissue trauma, SCs may divide minimally to repair subtle damage within individual myofibers or produce a larger progeny pool that forms new myofibers in cases of overt muscle injury. SC transition through proliferation, differentiation and renewal is governed by the molecular blueprint of the cells as well as by the extracellular milieu at the SC niche. In particular, the role of the fibroblast growth factor (FGF) family in regulating SCs during growth and aging is well recognized. Of the several FGFs shown to affect SCs, FGF1, FGF2 and FGF6 proteins have been documented in adult skeletal muscle. These prototypic paracrine FGFs transmit their mitogenic effect through the FGFRs, which are transmembrane tyrosine kinase receptors. Using the mouse model, we show here that of the four FGFRs, only Fgfr1 and Fgfr4 are expressed at relatively high levels in quiescent SCs and their proliferating progeny. To further investigate the role of FGFR1 in adult myogenesis, we have employed a genetic (Cre/loxP) approach for myogenic-specific (MyoDCre-driven) ablation of Fgfr1. Neither muscle histology nor muscle regeneration following cardiotoxin-induced injury were overtly affected in Fgfr1-ablated mice. This suggests that FGFR1 is not obligatory for SC performance in this acute muscle trauma model, where compensatory growth factor/cytokine regulatory cascades may exist. However, the SC mitogenic response to FGF2 is drastically repressed in isolated myofibers prepared from Fgfr1-ablated mice. Collectively, our study indicates that FGFR1 is important for FGF-mediated proliferation of SCs and its mitogenic role is not compensated by FGFR4 that is also highly expressed in SCs

    Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress

    No full text
    International audienceThe reduced regenerative potential of muscle fibres, most likely due to a decreased number and/or function of satellite cells, could play a significant role in the progression of muscle ageing. Accumulation of reactive oxygen species has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this work we have investigated the effect of oxidative stress generated by hydrogen peroxide in cultured human skeletal muscle satellite cells. We specifically focused on the activity and regulation of calpains. These calcium-dependent proteases are known to regulate many transduction pathways including apoptosis and play a critical role in satellite cell function. In our experimental conditions, which induce an increase in calcium concentration, protein oxidation and apoptotic cell death, a significant up-regulation of calpain expression and activity were observed and ATP synthase, a major component of the respiratory chain, was identified as a calpain target. Interestingly we were able to protect the cells from these H2O2-induced effects and prevent calpain up-regulation with a natural antioxidant extracted from pine bark (Oligopin®). These data strongly suggest that oxidative stress could impair satellite cell functionality via calpain-dependent pathways and that an antioxidant such as Oligopin® could prevent apoptosis and calpain activation

    Aging Disrupts Muscle Stem Cell Function by Impairing Matricellular WISP1 Secretion from Fibro-Adipogenic Progenitors

    No full text
    Research on age-related regenerative failure of skeletal muscle has extensively focused on the phenotypes of muscle stem cells (MuSCs). In contrast, the impact of aging on regulatory cells in the MuSC niche remains largely unexplored. Here, we demonstrate that aging impairs the function of mouse fibro- adipogenic progenitors (FAPs) and thereby indirectly affects the myogenic potential of MuSCs. Using transcriptomic profiling, we identify WNT1 Inducible Signaling Pathway Protein 1 (WISP1) as a FAP-derived matricellular signal that is lost during aging. WISP1 is required for efficient muscle regeneration and controls the expansion and asymmetric commitment of MuSCs through Akt signaling. Transplantation of young FAPs or systemic treatment with WISP1 restores the myogenic capacity of MuSCs in aged mice and rescues skeletal muscle regeneration. Our work establishes that loss of WISP1 from FAPs contributes to MuSC dysfunction in aged skeletal muscles and demonstrates that this mechanism can be targeted to rejuvenate myogenesis
    corecore