867 research outputs found

    High-resolution numerical modelling of flow-vegetation interactions

    Get PDF
    In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler–Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer

    Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics

    Get PDF
    © 2018 The Authors The need for hydrokinetic turbine wake characterisation and their environmental impact has led to a number of studies. However, a small number of them have taken into account mobile sediment bed effects. The aim of the present work is to study the impact of the presence of a horizontal-axis three-bladed turbine with the flow and a mobile sediment bed. We use a series of laboratory experiments with a scaled modelled turbine installed in a flume with a mobile sandy bed at the bottom. Acoustic instruments were used to monitor flow, suspended sediment and bed behaviour. Results show a velocity decrease of about 50% throughout the water column and no flow recovery after a distance of 15 rotor diameters. Clearly visible ripples in the absence of the model turbine were replaced by horseshoe-shaped scour pit in the near wake region, and a depositional heap in the far wake. Suspended sediment differences were recorded in the streamwise direction with a possible effect of the wake as far as 15 rotor diameters. These results imply potentially important effects on the efficiency of turbine arrays, if the flow were to be lower than expected, on turbine foundations and modify coastal sediment transport

    Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An atypical example of channel flow during the Himalayan orogeny

    Get PDF
    The channel-flow model for the Greater Himalayan Sequence (GHS) of the Himalayan orogen involves a partially molten, rheologically weak, mid-crustal layer “flowing” southward relative to the upper and lower crust during late Oligocene–Miocene. Flow was driven by topographic overburden, underthrusting, and focused erosion. We present new structural and thermobarometric analyses from the GHS in the Annapurna-Dhaulagiri Hima­laya, central Nepal; these data suggest that during exhumation, the GHS cooled, strengthened, and transformed from a weak “active channel” to a strong “channel plug” at greater depths than elsewhere in the Himalaya. After strengthening, continued convergence resulted in localized top-southwest (top-SW) shortening on the South Tibetan detachment system (STDS). The GHS in the Annapurna-Dhaulagiri Himalaya displays several geological features that distinguish it from other Himalayan regions. These include reduced volumes of leucogranite and migmatite, no evidence for partial melting within the sillimanite stability field, reduced structural thickness, and late-stage top-southwest shortening in the STDS. New and previously published structural and thermobarometric constraints suggest that the channel-flow model can be applied to mid-Eocene–early Miocene mid-crustal evolution of the GHS in the Annapurna-Dhaulagiri Himalaya. However, pressure-temperature-time (PTt) constraints indicate that following peak conditions, the GHS in this region did not undergo rapid isothermal exhumation and widespread sillima­nite-grade decompression melting, as commonly recorded elsewhere in the Hima­laya. Instead, lower-than-typical structural thickness and melt volumes suggest that the upper part of the GHS (Upper Greater Himalayan Sequence [UGHS]—the proposed channel) had a greater viscosity than in other Hima­layan regions. We suggest that viscosity-limited, subdued channel flow prevented exhumation on an isothermal trajectory and forced the UGHS to exhume slowly. These findings are distinct from other regions in the Himalaya. As such, we describe the mid-crustal evolution of the GHS in the Annapurna-­Dhaulagiri Himalaya as an atypical example of channel flow during the Himalayan orogeny

    Virtual embedded librarianship for information literacy teaching.

    Get PDF
    This paper, reports on the planning and preliminary results of an action research project undertaken for the redesign of an online distance learning information literacy (IL) module on the basis of virtual 'embedded librarianship'. The research project, which followed an action research design, brought together the IL module coordinator and an Academic Liaison Librarian, working at different institutions to collaboratively redesign the assessment and teaching of the module. Data were collected via a qualitative analysis of students' work and a series of open-ended questions addressed to students on the value of the approach followed. Students reacted positively to the embedded librarianship design and engaged constructively in situated learning. Challenges included time-zones differences, the contribution level of students and lack of confidence. The paper puts emphasis on educating future information professionals as embedded information literacy partners, promoting the development of transferable skills and a collaborative/sharing online working ethos

    Glycan-based near-infrared fluorescent (NIRF) imaging of gastrointestinal tumors: a preclinical proof-of-conceptIn vivostudy

    Get PDF
    Purpose Aberrantly expressed glycans in cancer are of particular interest for tumor targeting. This proof-of-conceptin vivostudy aims to validate the use of aberrant Lewis glycans as target for antibody-based, real-time imaging of gastrointestinal cancers. Procedures Immunohistochemical (IHC) staining with monoclonal antibody FG88.2, targeting Lewis(a/c/x), was performed on gastrointestinal tumors and their healthy counterparts. Then, FG88.2 and its chimeric human/mouse variant CH88.2 were conjugated with near-infrared fluorescent (NIRF) IRDye 800CW for real-time imaging. Specific binding was evaluatedin vitroon human gastrointestinal cancer cell lines with cell-based plate assays, flow cytometry, and immune-fluorescence microscopy. Subsequently, mice bearing human colon and pancreatic subcutaneous tumors were imagedin vivoafter intravenous administration of 1 nmol (150 mu g) CH88.2-800CW with the clinical Artemis NIRF imaging system using the Pearl Trilogy small animal imager as reference. One week post-injection of the tracer, tumors and organs were resected and tracer uptake was analyzedex vivo. Results IHC analysis showed strong FG88.2 staining on colonic, gastric, and pancreatic tumors, while staining on their normal tissue counterparts was limited. Next, human cancer cell lines HT-29 (colon) and BxPC-3 and PANC-1 (both pancreatic) were identified as respectively high, moderate, and low Lewis(a/c/x)-expressing. Using the clinical NIRF camera system for tumor-bearing mice, a mean tumor-to-background ratio (TBR) of 2.2 +/- 0.3 (Pearl: 3.1 +/- 0.8) was observed in the HT-29 tumors and a TBR of 1.8 +/- 0.3 (Pearl: 1.9 +/- 0.5) was achieved in the moderate expression BxPC-3 model. In both models, tumors could be adequately localized and delineated by NIRF for up to 1 week.Ex vivoanalysis confirmed full tumor penetration of the tracer and low fluorescence signals in other organs. Conclusions Using a novel chimeric Lewis(a/c/x)-targeting tracer in combination with a clinical NIRF imager, we demonstrate the potential of targeting Lewis glycans for fluorescence-guided surgery of gastrointestinal tumors.Surgical oncolog

    Current- and Wave-Generated Bedforms on Mixed Sand–Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential

    Get PDF
    The effect of bedforms on frictional roughness felt by the overlying flow is crucial to the regional modelling of estuaries and coastal seas. Bedforms are also a key marker of palaeoenvironments. Experiments have shown that even modest biotic and abiotic cohesion in sand inhibits bedform formation, modifies bedform size, and slows bedform development, but this has rarely been tested in nature. The present study used a comprehensive dataset recorded over a complete spring–neap cycle on an intertidal flat to investigate bedform dynamics controlled by a wide range of wave and current conditions, including the effects of wave–current angle and bed cohesion. A detailed picture of different bedform types and their relationship to the flow, be they equilibrium, non-equilibrium, or relict, was produced, and captured in a phase diagram that integrates wave-dominated, current-dominated, and combined wave–current bedforms. This bedform phase diagram incorporates a substantially wider range of flow conditions than previous phase diagrams, including bedforms related to near-orthogonal wave–current angles, such as ladderback ripples. Comparison with laboratory-derived bedform phase diagrams indicates that washed-out ripples, lunate interference ripples and upper-stage plane beds replace the subaqueous dune field; such bedform distributions may be a key characteristic of intertidal flats. The field data also provide a means of predicting the dimensions of these bedforms, which can be transferred to other areas and grain sizes. We show that an equation for the prediction of equilibrium bedform size is sufficient to predict the roughness, even though the bedforms are highly variable in character and only in equilibrium with the flow for approximately half the time. Whilst the effect of cohesive clay is limited under more active spring conditions, clay does play a role in reducing the bedform dimensions under more quiescent neap conditions. We also investigated which combinations of waves, currents, and bed clay contents in the intertidal zone have the highest potential for bedform preservation in the geological record. This shows that combined wave–current bedforms have the lowest preservation potential and equilibrium current ripples have the highest preservation potential, even in the presence of moderate and storm waves. Hence, the absence of wave ripples and combined-flow bedforms and their primary stratification in sedimentary successions cannot be taken as evidence that waves were absent at the time of deposition

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL

    Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV

    Full text link
    We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected chi2 values for NNPD
    corecore