30 research outputs found

    Tunable pentapeptide self-assembled β-sheet hydrogels

    Get PDF
    Oligopeptide-based supramolecular hydrogels hold promise in a range of applications. The gelation of these systems is hard to control with minor alterations in the peptide sequence significantly influencing the self-assembly process. This makes sequence design difficult whereby typical self-assembly rules cannot be applied. We explored the design of pentapeptide sequences with different charge distributions and discovered that they formed robust, pH-responsive hydrogels. Through altering the concentration and charge distribution of the peptide sequence, we demonstrated that the stiffness of the hydrogels can be tuned across two orders of magnitude (2-200 kPa). Also, through the reassembly of the b-sheet interactions, the hydrogels can both selfheal and shear thin. Using spectroscopic and cryo-imaging techniques, we investigated the relationship between peptide sequence, molecular structure and how these influence the mechanical properties of the hydrogel. These pentapetide hydrogels attributed with tunable morphology and mechanical properties have promise in tissue engineering, injectable delivery vectors and 3D printing applications

    Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction

    Get PDF
    The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78nm, a level of structural intricacy that represents a significant advance in fabrication complexity. The development of a general methodology to efficiently mix pentaerythritol triacrylate (PETA) with gold chloride hydrate (HAuCl4∙3H2O) is reported, where the gold salt concentration is adjustable on demand from zero to 20wt%. For the frst-time 7-Diethylamino-3-thenoylcoumarin (DETC) is used as the photoinitiator. Only 0.5wt% of DETC was required to promote both polymerisation and photoreduction of up to 20wt% of gold salt. This efficiency is the highest reported for Au-containing composite fabrication by two-photon lithography. Transmission Electron Microscopy (TEM) analysis confirmed the presence of small metallic nanoparticles (5.4±1.4nm for long axis / 3.7±0.9nm for short axis) embedded within the polymer matrix, whilst X-ray Photoelectron Spectroscopy (XPS) confirmed that they exist in the zero valent oxidation state. UV-vis spectroscopy defined that they exhibit the property of localised surface plasmon resonance (LSPR). The capability demonstrated in this study opens up new avenues for a range of applications, including plasmonics, metamaterials, flexible electronics and biosensors

    Author Correction: Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper

    Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer

    Get PDF
    The integrated analytical approach developed in this study offers a powerful methodology for the structural characterisation of complex molecular nanomaterials. Structures of a covalent organic framework based on boronate esters (COF-5) and a conjugated microporous polymer (Aza-CMP) have been investigated by a combination of several electron microscopy techniques elucidating the three-dimensional topology of the complex polycrystalline (COF) and non-crystalline (CMP) materials. Unexpected, aperiodic mesoporous channels of 20-50 nm in diameter were found to be penetrating the COF and CMP particles, which cannot be detected by X-ray diffraction techniques. The mesopores appear to be stable under a range of different conditions and accessible to gas molecules, exhibiting a particular bonding capability with CO2 in the case of the CMP. The mesoporosity is unrelated to the intrinsic chemical structures of the COF or CMP but rather it reflects the mechanisms of polymer particle formation in a polycondensation reaction. The mesopores may be templated by clusters of solvent molecules during the COF or CMP synthesis, leaving cavities within the polymer particles. The unexpected mesoporosity discovered in COF and CMP materials begs for re-assessment of the nature of framework materials and may open new opportunities for applications of these molecular materials in gas sorption or catalysis

    Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing

    Get PDF
    This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a single-step photoreduction process, integration of pre-formed MeNPs into 2PP resin, and site-selective MeNPs decoration of 3D 2PP structures. In the in situ formation strategy, a phase-transfer method is applied to transfer silver and copper ions from an aqueous phase into a toluene solvent to disperse them in photoreactive monomers.The addition of a photosensitive dye, coumarin 30, facilitated the reduction of silver ions and improved the distribution of silver nanoparticles (AgNPs). This strategy is successfully used to produce other MeNPs, such as Cu and Au. The integration of pre-formed MeNPs enabled highly controlled NP size distribution within the 2PP 3D structures with high-fidelity To enable selective decoration of 2PP 3D surfaces with MeNPs, a multimaterial strategy is developed, with one of the resins designed for thiol-ene reaction, which demonstrated selective binding to AuNPs. The successful development of complementary strategies for integration of MeNPs into 2PP resins offers exciting opportunities for fabrication of MeNP composites with sub-micron resolution for applications fromphotonics to metamaterials and drug delivery

    Efficacy of brief behavioral counselling by allied health professionals to promote physical activity in people with peripheral arterial disease (BIPP): study protocol for a multi-center randomized controlled trial

    Get PDF
    Background: Physical activity is recommended for people with peripheral arterial disease (PAD), and can improve walking capacity and quality of life; and reduce pain, requirement for surgery and cardiovascular events. This trial will assess the efficacy of a brief behavioral counselling intervention delivered by allied health professionals to improve physical activity in people with PAD. Methods: This is a multi-center randomised controlled trial in four cities across Australia. Participants (N = 200) will be recruited from specialist vascular clinics, general practitioners and research databases and randomised to either the control or intervention group. Both groups will receive usual medical care, a written PAD management information sheet including advice to walk, and four individualised contacts from a protocol-trained allied health professional over 3 months (weeks 1, 2, 6, 12). The control group will receive four 15-min telephone calls with general discussion about PAD symptoms and health and wellbeing. The intervention group will receive behavioral counselling via two 1-h face-to-face sessions and two 15-min telephone calls. The counselling is based on the 5A framework and will promote interval walking for 3 × 40 min/week. Assessments will be conducted at baseline, and 4, 12 and 24 months by staff blinded to participant allocation.Objectively assessed outcomes include physical activity (primary), sedentary behavior, lower limb body function, walking capacity, cardiorespiratory fitness, event-based claudication index, vascular interventions, clinical events, cardiovascular function, circulating markers, and anthropometric measures. Self-reported outcomes include physical activity and sedentary behavior, walking ability, pain severity, and health-related quality of life. Data will be analysed using an intention-to-treat approach. An economic evaluation will assess whether embedding the intervention into routine care would likely be value for money. A cost-effectiveness analysis will estimate change in cost per change in activity indicators due to the intervention, and a cost-utility analysis will assess change in cost per quality-adjusted life year. A full uncertainty analysis will be undertaken, including a value of information analysis, to evaluate the economic case for further research. Discussion: This trial will evaluate the efficacy and cost-effectiveness of a brief behavioral counselling intervention for a common cardiovascular disease with significant burden. Trial registration: ACTRN 12614000592640 Australian New Zealand Clinical Trials Registry. Registration Date 4 June 2014

    Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways. (Résumé d'auteur

    Tick-, Mosquito-, and Rodent-Borne Parasite Sampling Designs for the National Ecological Observatory Network [Special Feature: NEON Design]

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways

    Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus using spray drying

    Get PDF
    Three different milk proteins — skim milk powder (SMP), sodium caseinate (SC) and whey protein concentrate (WPC) — were tested for their ability to stabilize microencapsulated L. acidophilus produced using spray drying. Maltodextrin (MD) was used as the primary wall material in all samples, milk protein as the secondary wall material (7:3 MD/milk protein ratio) and the simple sugars, d-glucose and trehalose were used as tertiary wall materials (8:2:2 MD/protein/sugar ratio) combinations of all wall materials were tested for their ability to enhance the microbial and techno-functional stability of microencapsulated powders. Of the optional secondary wall materials, WPC improved L. acidophilus viability, up to 70 % during drying; SMP enhanced stability by up to 59 % and SC up to 6 %. Lactose and whey protein content enhanced thermoprotection; this is possibly due to their ability to depress the glass transition and melting temperatures and to release antioxidants. The resultant L. acidophilus powders were stored for 90 days at 4 °C, 25 °C and 35 °C and the loss of viability calculated. The highest survival rates were obtained at 4 °C, inactivation rates for storage were dependent on the carrier wall material and the SMP/d-glucose powders had the lowest inactivation rates (0.013 day−1) whilst the highest was observed for the control containing only MD (0.041 day−1) and the SC-based system (0.030 day−1). Further increase in storage temperature (25 °C and 35 °C) was accompanied by increase of the inactivation rates of L. acidophilus that followed Arrhenius kinetics. In general, SMP-based formulations exhibited the highest temperature dependency whilst WPC the lowest. d-Glucose addition improved the storage stability of the probiotic powders although it was accompanied by an increase of the residual moisture, water activity and hygroscopicity, and a reduction of the glass transition temperature in the tested systems

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Get PDF
    International audienceThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential
    corecore