207 research outputs found

    Dismay, Dissembly and Geocide:Ways Through the Maze of Trumpist Geopolitics

    Get PDF
    Written in the still-unfolding aftermath of Donald Trump's accession to the office of President of the United States, this article picks up and expands upon some of the key points raised by Kyle McGee's Heathen Earth, particularly concerning the forms of political violence emergent in an age ever-increasingly defined by climate change and the strategies of analysis, theorisation and critique that these geohistorical developments demand. Much like McGee's book, it takes a particularly troubling contemporary political event as a spur to develop thoughts deriving from more long-term projects concerning the way we have come to divide up the world and the manner in which these divisions are contestedpublishersversionNon peer reviewe

    Three Eruptions Observed by Remote Sensing Instruments Onboard Solar Orbiter

    Get PDF
    On February 21 and March 21 – 22, 2021, the Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter observed three prominence eruptions. The eruptions were associated with coronal mass ejections (CMEs) observed by Metis, Solar Orbiter’s coronagraph. All three eruptions were also observed by instruments onboard the Solar–TErrestrial RElations Observatory (Ahead; STEREO-A), the Solar Dynamics Observatory (SDO), and the Solar and Heliospheric Observatory (SOHO). Here we present an analysis of these eruptions. We investigate their morphology, direction of propagation, and 3D properties. We demonstrate the success of applying two 3D reconstruction methods to three CMEs and their corresponding prominences observed from three perspectives and different distances from the Sun. This allows us to analyze the evolution of the events, from the erupting prominences low in the corona to the corresponding CMEs high in the corona. We also study the changes in the global magnetic field before and after the eruptions and the magnetic field configuration at the site of the eruptions using magnetic field extrapolation methods. This work highlights the importance of multi-perspective observations in studying the morphology of the erupting prominences, their source regions, and associated CMEs. The upcoming Solar Orbiter observations from higher latitudes will help to constrain this kind of study better

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept

    Get PDF
    © 2023by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure.Peer reviewe

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore