2,234 research outputs found

    Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds

    Full text link
    We present measurements of the mean dense core lifetimes in numerical simulations of magnetically supercritical, turbulent, isothermal molecular clouds, in order to compare with observational determinations. "Prestellar" lifetimes (given as a function of the mean density within the cores, which in turn is determined by the density threshold n_thr used to define them) are consistent with observationally reported values, ranging from a few to several free-fall times. We also present estimates of the fraction of cores in the "prestellar", "stellar'', and "failed" (those cores that redisperse back into the environment) stages as a function of n_thr. The number ratios are measured indirectly in the simulations due to their resolution limitations. Our approach contains one free parameter, the lifetime of a protostellar object t_yso (Class 0 + Class I stages), which is outside the realm of the simulations. Assuming a value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3, again in good agreement with observational determinations. We also find that the mass in the failed cores is comparable to that in stellar cores at n_thr = 1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in agreement with recent observational suggestions that at the latter densities the cores are in general gravitationally dominated. We conclude by noting that the timescale for core contraction and collapse is virtually the same in the subcritical, ambipolar diffusion-mediated model of star formation, in the model of star formation in turbulent supercritical clouds, and in a model intermediate between the previous two, for currently accepted values of the clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm

    High- and Low-Mass Star Forming Regions from Hierarchical Gravitational Fragmentation. High local Star Formation Rates with Low Global Efficiencies

    Full text link
    We investigate the properties of "star forming regions" in a previously published numerical simulation of molecular cloud formation out of compressive motions in the warm neutral atomic interstellar medium, neglecting magnetic fields and stellar feedback. In this simulation, the velocity dispersions at all scales are caused primarily by infall motions rather than by random turbulence. We study the properties (density, total gas+stars mass, stellar mass, velocity dispersion, and star formation rate) of the cloud hosting the first local, isolated "star formation" event in the simulation and compare them with those of the cloud formed by a later central, global collapse event. We suggest that the small-scale, isolated collapse may be representative of low- to intermediate-mass star-forming regions, while the large-scale, massive one may be representative of massive star forming regions. We also find that the statistical distributions of physical properties of the dense cores in the region of massive collapse compare very well with those from a recent survey of the massive star forming region in the Cygnus X molecular cloud. The star formation efficiency per free-fall time (SFE_ff) of the high-mass SF clump is low, ~0.04. This occurs because the clump is accreting mass at a high rate, not because its specific SFR (SSFR) is low. This implies that a low value of the SFE_ff does not necessarily imply a low SSFR, but may rather indicate a large gas accretion rate. We suggest that a globally low SSFR at the GMC level can be attained even if local star forming sites have much larger values of the SSFR if star formation is a spatially intermittent process, so that most of the mass in a GMC is not participating of the SF process at any given time.Comment: Accepted by ApJ. Revised version, according to exchanges with referee. Original results unchanged. Extensive new discussion on the low global efficiency vs. high local efficiency of star formation. Abstract abridge

    Modelado de sensores piezoresistivos y uso de una interfaz basada en guantes de datos para el control de impedancia de manipuladores robóticos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 21-02-2014Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu

    Dependence of the Star Formation Efficiency on the Parameters of Molecular Cloud Formation Simulations

    Full text link
    We investigate the response of the star formation efficiency (SFE) to the main parameters of simulations of molecular cloud formation by the collision of warm diffuse medium (WNM) cylindrical streams, neglecting stellar feedback and magnetic fields. The parameters we vary are the Mach number of the inflow velocity of the streams, Msinf, the rms Mach number of the initial background turbulence in the WNM, and the total mass contained in the colliding gas streams, Minf. Because the SFE is a function of time, we define two estimators for it, the "absolute" SFE, measured at t = 25 Myr into the simulation's evolution (sfeabs), and the "relative" SFE, measured 5 Myr after the onset of star formation in each simulation (sferel). The latter is close to the "star formation rate per free-fall time" for gas at n = 100 cm^-3. We find that both estimators decrease with increasing Minf, although by no more than a factor of 2 as Msinf increases from 1.25 to 3.5. Increasing levels of background turbulence similarly reduce the SFE, because the turbulence disrupts the coherence of the colliding streams, fragmenting the cloud, and producing small-scale clumps scattered through the numerical box, which have low SFEs. Finally, the SFE is very sensitive to the mass of the inflows, with sferel decreasing from ~0.4 to ~0.04 as the the virial parameter in the colliding streams increases from ~0.15 to ~1.5. This trend is in partial agreement with the prediction by Krumholz & McKee (2005), since the latter lies within the same range as the observed efficiencies, but with a significantly shallower slope. We conclude that the observed variability of the SFE is a highly sensitive function of the parameters of the cloud formation process, and may be the cause of significant scatter in observational determinations.Comment: 19 pages, submitted to MNRA

    A bright radio HH object with large proper motions in the massive star-forming region W75N

    Get PDF
    We analyze radio continuum and line observations from the archives of the Very Large Array, as well as X-ray observations from the \emph{Chandra} archive of the region of massive star formation W75N. Five radio continuum sources are detected: VLA 1, VLA 2, VLA 3, Bc, and VLA 4. VLA 3 appears to be a radio jet; we detect J=1-0, v=0 SiO emission towards it, probably tracing the inner parts of a molecular outflow. The radio continuum source Bc, previously believed to be tracing an independent star, is found to exhibit important changes in total flux density, morphology, and position. These results suggest that source Bc is actually a radio Herbig-Haro object, one of the brightest known, powered by the VLA~3 jet source. VLA 4 is a new radio continuum component, located a few arcsec to the south of the group of previously known radio sources. Strong and broad (1,1) and (2,2) ammonia emission is detected from the region containing the radio sources VLA~1, VLA~2, and VLA~3. Finally, the 2-10 keV emission seen in the \emph{Chandra}/ACIS image shows two regions that could be the termination shocks of the outflows from the multiple sources observed in W75N.Comment: 26 pages, 7 figure

    Core and filament formation in magnetized, self-gravitating isothermal layers

    Get PDF
    We examine the role of the gravitational instability in an isothermal, self-gravitating layer threaded by magnetic fields on the formation of filaments and dense cores. Using a numerical simulation, we follow the non-linear evolution of a perturbed equilibrium layer. The linear evolution of such a layer is described in the analytic work of Nagai et al. We find that filaments and dense cores form simultaneously. Depending on the initial magnetic field, the resulting filaments form either a spiderweb-like network (for weak magnetic fields) or a network of parallel filaments aligned perpendicular to the magnetic field lines (for strong magnetic fields). Although the filaments are radially collapsing, the density profile of their central region (up to the thermal scale height) can be approximated by a hydrodynamical equilibrium density structure. Thus, the magnetic field does not play a significant role in setting the density distribution of the filaments. The density distribution outside of the central region deviates from the equilibrium. The radial column density distribution is then flatter than the expected power law of r -4 and similar to filament profiles observed with Herschel. Our results do not explain the near constant filament width of 0.1pc. However, our model does not include turbulent motions. It is expected that the accretion-driven amplification of these turbulent motions provides additional support within the filaments against gravitational collapse. Finally, we interpret the filamentary network of the massive star forming complex G14.225-0.506 in terms of the gravitational instability model and find that the properties of the complex are consistent with being formed out of an unstable layer threaded by a strong, parallel magnetic field

    Molecular Cloud Evolution VI. Measuring cloud ages

    Get PDF
    This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.In previous contributions, we have presented an analytical model describing the evolution and star formation rate (SFR) of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The cloud’s evolution is characterized by an initial increase in its mass, density, SFR, and star formation efficiency (SFE), as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the cloud’s evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25 per cent of their mass had become molecular. We find ages from ∼1.5 to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds (M ∼ 103–104M⊙) end their lives with a mini-burst of star formation, reaching SFRs ∼300–500M⊙ Myr−1. By this time, they have contracted to become compact (∼1 pc) massive star-forming clumps, in general embedded within larger giant molecular clouds.Peer reviewe

    An Evolutionary Model for Collapsing Molecular Clouds and Their Star Formation Activity

    Full text link
    We present an idealized, semi-empirical model for the evolution of gravitationally contracting molecular clouds (MCs) and their star formation rate (SFR) and efficiency (SFE). The model assumes that the instantaneous SFR is given by the mass above a certain density threshold divided by its free-fall time. The instantaneous number of massive stars is computed assuming a Kroupa IMF. These stars feed back on the cloud through ionizing radiation, eroding it. The main controlling parameter of the evolution turns out to be the maximum cloud mass, \Mmax. This allows us to compare various properties of the model clouds against their observational counterparts. A giant molecular cloud (GMC) model (\Mmax \sim 10^5 \Msun) adheres very well to the evolutionary scenario recently inferred by Kawamura et al. (2009) for GMCs in the Large Magellanic Cloud. A model cloud with \Mmax \approx 2000 \Msun evolves in the Kennicutt-Schmidt diagram first passing through the locus of typical low- to-intermediate mass star-forming clouds, and then moving towards the locus of high-mass star-forming ones over the course of 10\sim 10 Myr. Also, the stellar age histograms for this cloud a few Myr before its destruction agree very well with those observed in the ρ\rho-Oph stellar association, whose parent cloud has a similar mass, and imply that the SFR of the clouds increases with time. Our model thus agrees well with various observed properties of star-forming MCs, suggesting that the scenario of gravitationally collapsing MCs, with their SFR regulated by stellar feedback, is entirely feasible and in agreement with key observed properties of molecular clouds.Comment: Version accepted for publication in ApJ. At referee's suggestion, includes comparison with numerical models in addition to comparison with observational dat

    Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Full text link
    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.Comment: extended version, ApJ in pres

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation
    corecore