273 research outputs found

    Crystallographic studies of bacterial single-stranded DNA-binding proteins

    Get PDF
    Single-stranded DNA-binding proteins (SSBs) from different bacteria ( E.coli, B. abortus, P. mirabilis and S. marcenecens) were crystallised and their structures determined by X-ray crystallography. The overall topology of all four SSB structures are similar. The important residues His-55, which is involved in tetramerization, Trp-40, Trp-54, Trp-88 and Phe-60, which are involved in ssDNA-binding, are sequentially, structurally and conformationally conserved. The four structures do however, show difference in and near their loop regions. Two new cryo-cooling techniques are described. They have been shown to work favorably for SSBs and several other proteins

    Use of dry paraffin oil and Panjelly in the xenon derivatization of protein crystals

    Full text link

    Structural Insights into the Mechanism of Protein O-Fucosylation

    Get PDF
    Protein O-fucosylation is an essential post-translational modification, involved in the folding of target proteins and in the role of these target proteins during embryonic development and adult tissue homeostasis, among other things. Two different enzymes are responsible for this modification, Protein O-fucosyltransferase 1 and 2 (POFUT1 and POFUT2, respectively). Both proteins have been characterised biologically and enzymatically but nothing is known at the molecular or structural level. Here we describe the first crystal structure of a catalytically functional POFUT1 in an apo-form and in complex with GDP-fucose and GDP. The enzyme belongs to the GT-B family and is not dependent on manganese for activity. GDP-fucose/GDP is localised in a conserved cavity connected to a large solvent exposed pocket, which we show is the binding site of epidermal growth factor (EGF) repeats in the extracellular domain of the Notch Receptor. Through both mutational and kinetic studies we have identified which residues are involved in binding and catalysis and have determined that the Arg240 residue is a key catalytic residue. We also propose a novel SN1-like catalytic mechanism with formation of an intimate ion pair, in which the glycosidic bond is cleaved before the nucleophilic attack; and theoretical calculations at a DFT (B3LYP/6-31+G(d,p) support this mechanism. Thus, the crystal structure together with our mutagenesis studies explain the molecular mechanism of POFUT1 and provide a new starting point for the design of functional inhibitors to this critical enzyme in the future

    Experimental phasing with SHELXC/D/E: combining chain tracing with density modification

    Get PDF
    Experimental phasing with SHELXC/D/E has been enhanced by the incorporation of main-chain tracing into the iterative density modification; this also provides a simple and effective way of exploiting noncrystallographic symmetry

    Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68

    Get PDF
    Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.Jia Quyen Truong, Santosh Panjikar, Linda Shearwin-Whyatt, John B. Bruning and Keith E. Shearwi

    The structure of the complex between a-tubulin, TBCE and TBCB reveals a tubulin dimer dissociation mechanism

    Get PDF
    Tubulin proteostasis is regulated by a group of molecular chaperones termed tubulin cofactors (TBC). Whereas tubulin heterodimer formation is well-characterized biochemically, its dissociation pathway is not clearly understood. Here, we carried out biochemical assays to dissect the role of the human TBCE and TBCB chaperones in a-tubulin–b-tubulin dissociation. We used electron microscopy and image processing to determine the three-dimensional structure of the human TBCE, TBCB and a-tubulin (aEB) complex, which is formed upon a-tubulin–b-tubulin heterodimer dissociation by the two chaperones. Docking the atomic structures of domains of these proteins, including the TBCE UBL domain, as we determined by X-ray crystallography, allowed description of the molecular architecture of the aEB complex. We found that heterodimer dissociation is an energy-independent process that takes place through a disruption of the a-tubulin–b-tubulin interface that is caused by a steric interaction between b-tubulin and the TBCE cytoskeleton-associated protein glycine-rich (CAP-Gly) and leucine-rich repeat (LRR) domains. The protruding arrangement of chaperone ubiquitin-like (UBL) domains in the aEB complex suggests that there is a direct interaction of this complex with the proteasome, thus mediating a-tubulin degradation

    Automating tasks in protein structure determination with the Clipper Python module

    Get PDF
    Scripting programming languages provide the fastest means of prototyping complex functionality. Those with a syntax and grammar resembling human language also greatly enhance the maintainability of the produced source code. Furthermore, the combination of a powerful, machine-independent scripting language with binary libraries tailored for each computer architecture allows programs to break free from the tight boundaries of efficiency traditionally associated with scripts. In the present work, we describe how an efficient C++ crystallographic library such as Clipper can be wrapped, adapted and generalised for use in both crystallographic and electron cryo-microscopy applications, scripted with the Python language. We shall also place an emphasis on best practices in automation, illustrating how this can be achieved with this new Python module. This article is protected by copyright. All rights reserved

    Distributed structure determination at the JCSG

    Get PDF
    The software suite Xsolve semi-exhaustively explores key parameters of the X-ray structure-determination process to compute multiple three-dimensional protein structures independently and in parallel from a set of diffraction images. An optimal consensus model for subsequent manual refinement is computed from these structures

    The crystal structure of mammalian inositol 1,3,4,5,6-pentakisphosphate 2-kinase reveals a new zinc-binding site and key features for protein function

    Get PDF
    Inositol 1,3,4,5,6-pentakisphosphate 2-kinases (IP5 2-Ks) comprise a family of enzymes in charge of synthesizing inositol hexakisphosphate (IP6) in eukaryotic cells. This protein and its product IP6 present many roles in cells, participating in mRNA export, embryonic development, and apoptosis. We reported previously that the full-length IP5 2-K from Arabidopsis thaliana (At) is a zinc metallo-enzyme including two separated lobes (the N and C lobes). We have also shown conformational changes in IP5 2-K and have identified the residues involved in substrate recognition and catalysis. However, the specific features of mammalian IP5 2-Ks remain unknown. To this end, we report here the first structure for a murine IP5 2-K in complex with ATP/IP5 or IP6. Our structural findings indicated that the general folding in N and C lobes is conserved with AtIP5 2-K. A helical scaffold in the C lobe constitutes the inositol phosphate (IP)-binding site, which, along with the participation of the N lobe, endows high specificity to this protein. However, we also noted large structural differences between the orthologous from these two eukaryotic kingdoms. These differences include a novel zinc-binding site and regions unique to the mammalian IP5 2-K, as an unexpected basic patch on the protein surface. In conclusion, our findings have uncovered distinct features of a mammalian IP5 2-K and set the stage for investigations into protein-protein or protein-RNA interactions important for IP5 2-K function and activity
    corecore