65 research outputs found

    BYU Law School Faculty Listing

    Get PDF
    Presence of Technomyrmex difficilis (Forel, 1892) in Saint-BarthĂ©lemy, French West Indies (Hymenoptera, Formicidae, Dolichoderinae). We report here for the first time the occurrence of the ant Technomyrmex difficilis (Forel, 1892) in Saint-BarthĂ©lemy, French West Indies. Morphological diagnostic characters which allow its identification according to the criteria defined by Bolton in 2007 are presented. Sequencing of a 650 base pairs region of the mitochondrial gene coding for cytochrome oxidase 1 (CO1), proposed as a standard barcode for the animal kingdom, confirms the specific identification of specimens.Nous mentionnons pour la premiĂšre fois la Fourmi Technomyrmex difficilis (Forel, 1892) aux Antilles françaises, dans l’üle de Saint-BarthĂ©lemy. Des caractĂšres de diagnose morphologique permettant son identification d’aprĂšs les critĂšres dĂ©finis par Bolton en 2007 sont prĂ©sentĂ©s. Le sĂ©quençage d’une rĂ©gion de 650 paires de bases du gĂšne mitochondrial codant pour la cytochrome oxidase 1 (CO1), proposĂ©e comme barcode standard chez les animaux, confirme l’identification spĂ©cifique des spĂ©cimens.Celini LĂ©onide, Roy Virginie, Delabie Jacques H.C., Frechault Sophie, Pando Anne, Mora Philippe. PremiĂšre mention de Technomyrmex difficilis (Forel, 1892) Ă  Saint-BarthĂ©lemy, Petites Antilles (Hymenoptera, Formicidae, Dolichoderinae). In: Bulletin de la SociĂ©tĂ© entomologique de France, volume 119 (3),2014. pp. 293-298

    Mechanical and Biochemical Methods for Rigor Measurement: Relationship with Eating Quality

    Get PDF
    peer-reviewedMeat quality parameters are affected by a complex series of interacting chemical, biochemical, physical, and physiological components that determine not only the suitability for consumption and the conditions for further processing and storage but also consumer acceptability. Deep understanding and careful manipulation of these intrinsic and extrinsic factors have to be taken in account to ensure high quality of meat, with better technological properties and increased safety for consumers. Among meat quality characteristics, meat tenderness has been perceived as the most important factor governing consumer acceptability. Therefore, being able to early predict meat texture and other related parameters in order to guarantee consistent eating quality to the final consumer is one of the most sought-after goals in the meat industry. Accurate measurements of both the biochemical and mechanical characteristics that underpin muscle and its transformation into meat are key factors to an improved understanding of meat quality, but also this early-stage measurements may be useful to develop methods to predict final meat texture. It is the goal of this review to present the available research literature on the historical and contemporary analyses that could be applied in early postmortem stages (pre-rigor and rigor) to determine the biochemical and physical characteristics of the meat that can potentially impact the eating quality

    The additive value of CA19.9 monitoring in a pancreatic cyst surveillance program

    Get PDF
    Background:Surveillance of pancreatic cysts focuses on the detection of (mostly morphologic) features warranting surgery. European guidelines consider elevated CA19.9 as a relative indication for surgery. We aimed to evaluate the role of CA19.9 monitoring for early detection and management in a cyst surveillance population. Methods: The PACYFIC-registry is a prospective collaboration that investigates the yield of pancreatic cyst surveillance performed at the discretion of the treating physician. We included participants for whom at least one serum CA19.9 value was determined by a minimum follow-up of 12 months.Results: Of 1865 PACYFIC participants, 685 met the inclusion criteria for this study (mean age 67 years, SD 10; 61% female). During a median follow-up of 25 months (IQR 24, 1966 visits), 29 participants developed high-grade dysplasia (HGD) or pancreatic cancer. At baseline, CA19.9 ranged from 1 to 591 kU/L (median 10 kU/L [IQR 14]), and was elevated (≄37 kU/L) in 64 participants (9%). During 191 of 1966 visits (10%), an elevated CA19.9 was detected, and these visits more often led to an intensified follow-up (42%) than those without an elevated CA19.9 (27%; p &lt; 0.001). An elevated CA19.9 was the sole reason for surgery in five participants with benign disease (10%). The baseline CA19.9 value was (as continuous or dichotomous variable at the 37 kU/L threshold) not independently associated with HGD or pancreatic cancer development, whilst a CA19.9 of ≄ 133 kU/L was (HR 3.8, 95% CI 1.1–13, p = 0.03). Conclusions: In this pancreatic cyst surveillance cohort, CA19.9 monitoring caused substantial harm by shortening surveillance intervals (and performance of unnecessary surgery). The current CA19.9 cutoff was not predictive of HGD and pancreatic cancer, whereas a higher cutoff may decrease false-positive values. The role of CA19.9 monitoring should be critically appraised prior to implementation in surveillance programs and guidelines.</p

    Genotypic variability enhances the reproducibility of an ecological study

    Get PDF
    Many scientific disciplines are currently experiencing a “reproducibility crisis” because numerous scientific findings cannot be repeated consistently. A novel but controversial hypothesis postulates that stringent levels of environmental and biotic standardization in experimental studies reduces reproducibility by amplifying impacts of lab-specific environmental factors not accounted for in study designs. A corollary to this hypothesis is that a deliberate introduction of controlled systematic variability (CSV) in experimental designs may lead to increased reproducibility. We tested this hypothesis using a multi-laboratory microcosm study in which the same ecological experiment was repeated in 14 laboratories across Europe. Each laboratory introduced environmental and genotypic CSV within and among replicated microcosms established in either growth chambers (with stringent control of environmental conditions) or glasshouses (with more variable environmental conditions). The introduction of genotypic CSV led to lower among-laboratory variability in growth chambers, indicating increased reproducibility, but had no significant effect in glasshouses where reproducibility was generally lower. Environmental CSV had little effect on reproducibility. Although there are multiple causes for the “reproducibility crisis”, deliberately including genetic variation may be a simple solution for increasing the reproducibility of ecological studies performed in controlled environments

    Distribution of Burkholderia pseudomallei within a 300-cm deep soil profile: implications for environmental sampling.

    Get PDF
    The environmental distribution of Burkholderia pseudomallei, the causative agent of melioidosis, remains poorly understood. B. pseudomallei is known to have the ability to occupy a variety of environmental niches, particularly in soil. This paper provides novel information about a putative association of soil biogeochemical heterogeneity and the vertical distribution of B. pseudomallei. We investigated (1) the distribution of B. pseudomallei along a 300-cm deep soil profile together with the variation of a range of soil physico-chemical properties; (2) whether correlations between the distribution of B. pseudomallei and soil physico-chemical properties exist and (3) when they exist, what such correlations indicate with regards to the environmental conditions conducive to the occurrence of B. pseudomallei in soils. Unexpectedly, the highest concentrations of B. pseudomallei were observed between 100 and 200 cm below the soil surface. Our results indicate that unravelling the environmental conditions favorable to B. pseudomallei entails considering many aspects of the actual complexity of soil. Important recommendations regarding environmental sampling for B. pseudomallei can be drawn from this work, in particular that collecting samples down to the water table is of foremost importance, as groundwater persistence appears to be a controlling factor of the occurrence of B. pseudomallei in soil

    Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment

    Get PDF
    Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death

    Do earthworms and roots cooperate to build soil macroaggregates ? A microcosm experiment

    No full text
    Soil ecosystem engineers are major actors of soil macroaggregation, a process that drives the production of ecosystem services by soils. However, our inability to identify the origins of different types of macroaggregates found in soils is an obstacle to describing and modeling their dynamics and associated processes (C sequestration; hydraulic properties). This laboratory study investigated mechanisms of biological soil macroaggregation by two different earthworm species (Apporectodea caliginosa (Savigny) and Allolobophora chlorotica (Savigny) and two plant species (Trifolium pratense, Plantago lanceolata L), in isolation and in all possible combinations. Near infrared (NIR) spectral analysis significantly discriminated macroaggregates according to the organisms that created them since each organism produced macroaggregates with distinct NIR signals (p<0.001). The largest departure from the control signal was observed with T. pratense whereas earthworms and P. lanceolata specific signals were less contrasted. Macroaggregates formed in the presence of more than one ecosystem engineers had mixed signals showing that several actors had participated in their construction. This means that roots and earthworms did not produce macroaggregates in isolation and rather added their effects in building structures of mixed origins. Further studies based on the present methodology will tell us more on below ground behaviors of ecosystem engineers and their interactive building of soil habitats

    Soil organic matter dynamics along a rice chronosequence in north-eastern Argentina : evidence from natural C-13 abundance and particle size fractionation

    No full text
    We studied the consequences of rice cultivation and its subsequent abandonment for soil organic matter (SOM) dynamics in northeastern Argentina. Two chronosequences, which included a pristine grassland with C4 vegetation as a control, and several stages of rice (C3) fields abandoned for 1, 2, 4, 6 and 15 years were selected, and soil samples from the first 10 cm were gathered from each plot. Natural C-13 abundance coupled with particle-size fractionation were employed to characterize SOM changes through time discriminated by SOM origin. Soil samples up to 50 cm were also collected throughout one chronosequence. Most changes in SOM occurred on the first 20 cm layer and, bulk density, carbon and nitrogen content, as well as delta C-13 remained similar at greater depths. After the rice cropping, the bulk density was slightly greater than in the natural grassland, and remained stable after the abandonment. Carbon and nitrogen contents remained almost stable in the surface layer during the cultivation. delta C-13 varied accordingly with the changes in vegetation cover with a C4 signature in the natural grassland and mainly a C3 signature in the rice fields. The abandonment of the rice cropping induced a decrease of the soil organic matter content, mainly of natural grassland origin, during the first 4 years. When the abandonment extended, the SOM content (from C4 origin) increased slowly and after 15 years, was almost the same as that of the natural grassland. The carbon turnover was greater in the coarser fractions than in the finer ones, confirming that soil organic carbon in the sand fraction was relatively labile. However, all the fractions were affected by inputs and outputs of C derived from rice and natural grassland. This fact could indicate that the former protected carbon could become less stable due to cultivation. (c) 2006 Elsevier Ltd. All rights reserved

    Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis

    No full text
    This comprehensive survey studied the actinobacterial community structure and putative representative members associated with the gut of the wood-feeding termite, Nasutitermes corniger (Motschulsky), using nested PCR-DGGE and 16S rDNA sequences analyses. The closest relatives of the actinobacteria inhabiting the gut of Nasutitermes corniger were in five families, regardless of the geographical origin of the termite colony: Propionibacteriaceae, Streptomycetaceae, Cellulomonodaceae, Corynebacteriaceae and Rubrobacteraceae. Feeding termites on beech wood did not result in substantial changes in the actinobacterial community structure as revealed by DGGE banding patterns. Most of the 16S rDNA sequences obtained after excision and sequencing of DGGE bands clustered with those previously retrieved in termite guts. These results confirm the presence of gut-specific actinobacteria. Except for the 16S rDNA sequences affiliated to Streptomycetaceae and Cellulomonodaceae, no sequence had more than 97% similarity with the closest isolated strains, indicating the presence of microorganisms that have not yet been cultivated. These results suggest that members of the Actinomycetales order account for the largest proportion of the Actinobacteria phylum inhabiting the gut of the termite N. corniger
    • 

    corecore