9 research outputs found

    Practice changes beta power at rest and its modulation during movement in healthy subjects but not in patients with Parkinson\u27s disease

    Full text link
    Abstract Background PD (Parkinson\u27s disease) is characterized by impairments in cortical plasticity, in beta frequency at rest and in beta power modulation during movement (i.e., event‐related ERS [synchronization] and ERD [desynchronization]). Recent results with experimental protocols inducing long‐term potentiation in healthy subjects suggest that cortical plasticity phenomena might be reflected by changes of beta power recorded with EEG during rest. Here, we determined whether motor practice produces changes in beta power at rest and during movements in both healthy subjects and patients with PD. We hypothesized that such changes would be reduced in PD. Methods We thus recorded EEG in patients with PD and age‐matched controls before, during and after a 40‐minute reaching task. We determined posttask changes of beta power at rest and assessed the progressive changes of beta ERD and ERS during the task over frontal and sensorimotor regions. Results We found that beta ERS and ERD changed significantly with practice in controls but not in PD. In PD compared to controls, beta power at rest was greater over frontal sensors but posttask changes, like those during movements, were far less evident. In both groups, kinematic characteristics improved with practice; however, there was no correlation between such improvements and the changes in beta power. Conclusions We conclude that prolonged practice in a motor task produces use‐dependent modifications that are reflected in changes of beta power at rest and during movement. In PD, such changes are significantly reduced; such a reduction might represent, at least partially, impairment of cortical plasticity

    Beta oscillatory changes and retention of motor skills during practice in healthy subjects and in patients with Parkinson's disease

    Get PDF
    Recently we found that modulation depth of beta power during movement increases with practice over sensory-motor areas in normal subjects but not in patients with Parkinson's disease (PD). As such changes might reflect use-dependent modifications, we concluded that reduction of beta enhancement in PD represents saturation of cortical plasticity. A few questions remained open: What is the relation between these EEG changes and retention of motor skills? Would a second task exposure restore beta modulation enhancement in PD? Do practice-induced increases of beta modulation occur within each block? We thus recorded EEG in patients with PD and age-matched controls in two consecutive days during a 40-min reaching task divided in fifteen blocks of 56 movements each. The results confirmed that, with practice, beta modulation depth over the contralateral sensory-motor area significantly increased across blocks in controls but not in PD, while performance improved in both groups without significant correlations between behavioral and EEG data. The same changes were seen the following day in both groups. Also, beta modulation increased within each block with similar values in both groups and such increases were partially transferred to the successive block in controls, but not in PD. Retention of performance improvement was present in the controls but not in the patients and correlated with the increase in day 1 modulation depth. Therefore, the lack of practice-related increase beta modulation in PD is likely due to deficient potentiation mechanisms that permit between-block saving of beta power enhancement and trigger mechanisms of memory formation

    Migration as adaptation to freshwater and inland hydroclimatic changes? A meta-review of existing evidence

    No full text
    Due to its potential geo-political and environmental implications, climate migration is an increasing concern to the international community. However, while there is considerable attention devoted to migration in response to sea-level rise, there is a limited understanding of human mobility due to freshwater and inland hydroclimatic changes. Hence, the aim of this paper is to examine the existing evidence on migration as an adaptation strategy due to freshwater and inland hydroclimatic changes. A meta-review of papers published between 2014 and 2019 yielded 67 publications, the majority of which focus on a handful of countries in the Global South. Droughts, floods, extreme heat, and changes in seasonal precipitation patterns were singled out as the most common hazards triggering migration. Importantly, most of the papers discuss mobility as part of a portfolio of responses. Motivations to migrate at the household level range from survival to searching for better economic opportunities. The outcomes of migration are mixed — spanning from higher incomes to difficulties in finding employment after moving and struggles with a higher cost of living. While remittances can be beneficial, migration does not always have a positive outcome for those who are left behind. Furthermore, this meta-review shows that migration, even when desired, is not an option for some of the most vulnerable households. These multifaceted results suggest that, while climate mobility is certainly happening due to freshwater and inland hydroclimatic changes, studies reviewing it are limited and substantial gaps remain in terms of geographical coverage, implementation assessments, and outcomes evaluation. We argue that these gaps need to be filled to inform climate and migration policies that increasingly need to be intertwined rather than shaped in isolation from each other

    Water

    No full text

    Water. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

    No full text
    corecore