27 research outputs found

    The in-plane paraconductivity in La_{2-x}Sr_xCuO_4 thin film superconductors at high reduced-temperatures: Independence of the normal-state pseudogap

    Full text link
    The in-plane resistivity has been measured in La2xSrxCuO4La_{2-x}Sr_xCuO_4 (LSxCO) superconducting thin films of underdoped (x=0.10,0.12x=0.10,0.12), optimally-doped (x=0.15x=0.15) and overdoped (x=0.20,0.25x=0.20,0.25) compositions. These films were grown on (100)SrTiO3_3 substrates, and have about 150 nm thickness. The in-plane conductivity induced by superconducting fluctuations above the superconducting transition (the so-called in-plane paraconductivity, Δσab\Delta\sigma_{ab}) was extracted from these data in the reduced-temperature range 10^{-2}\lsim\epsilon\equiv\ln(T/\Tc)\lsim1. Such a Δσab(ϵ)\Delta\sigma_{ab}(\epsilon) was then analyzed in terms of the mean-field--like Gaussian-Ginzburg-Landau (GGL) approach extended to the high-ϵ\epsilon region by means of the introduction of a total-energy cutoff, which takes into account both the kinetic energy and the quantum localization energy of each fluctuating mode. Our results strongly suggest that at all temperatures above Tc, including the high reduced-temperature region, the doping mainly affects in LSxCO thin films the normal-state properties and that its influence on the superconducting fluctuations is relatively moderate: Even in the high-ϵ\epsilon region, the in-plane paraconductivity is found to be independent of the opening of a pseudogap in the normal state of the underdoped films.Comment: 35 pages including 10 figures and 1 tabl

    Images of interlayer Josephson vortices in single-layer cuprates

    Get PDF
    The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} and three near-optimally doped cuprate superconductors: La{sub 2{minus}x}Sr{sub x}CuO{sub 4}, (Hg, Cu)Ba{sub 2}CuO{sub 4+{delta}}, and Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}}

    Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources

    Get PDF
    Instrumentatio
    corecore