124 research outputs found

    Desalination effects on macroalgae (part b): Transplantation experiments at brine-impacted sites with Dictyota spp. from the Pacific Ocean and Mediterranean Sea

    Get PDF
    Desalination residual brines are mostly discharged to marine environments, which can produce osmotic stress on sensitive benthic organisms. In this investigation, we performed transplantation experiments nearby desalination plants using two brown macroalgae species from a cosmopolitan genus: Dictyota kunthii (Chile) and Dictyota dichotoma (Spain). Parameters related to photosynthetic activity and oxidative stress were evaluated at 3 and 7 days for D. kunthii, and 3 and 6 days for D. dichotoma; each at 2 different impacted sites and 1 control. We observed that brine exposition at both impacted sites in Chile generated a marked stress response on D. kunthii, reflected in a decrease of primary productivity (ETRmax), light requirement (EkETR), and an excessive thermal dissipation (NPQmax), especially at 7 days. In D. dichotoma, similar impaired photosynthetic activity was recorded but only at the highest brine influence site during day 3. Regarding oxidative stress, both species displayed high levels of H2O2 when exposed to brine-influenced sites. Although in D. kunthii H2O2 content together with lipid peroxidation was higher after 3 days, these returned to baseline values towards day 7; instead, D. dichotoma H2O2 levels increased only at day 6. This easy and practical approach has proven to provide valuable data to address potential impacts of brine discharges at global scale coastal ecosystems.We gratefully thank financial support to ANID FONDECYT Postdoctoral fellowship #3180394, European Commission Marie Skłodowska-Curie Actions #888415, and ANID INES I+D # INID210013. Financial support for mobility granted from SEGIB Scholarship and Fundación Carolina of Spain to PM. Also, we thank TESPOST 04/19 PhD scholarship granted by Universidad de Playa Ancha to PM

    MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Influence on Metal Exclusion/Extrusion Mechanisms and Photosynthesis

    Get PDF
    There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.</jats:p

    TOI 540 b: A Planet Smaller than Earth Orbiting a Nearby Rapidly Rotating Low-mass Star

    Get PDF
    We present the discovery of TOI 540 b, a hot planet slightly smaller than Earth orbiting the low-mass star 2MASS J05051443-4756154. The planet has an orbital period of P=1.239149P = 1.239149 days (±\pm 170 ms) and a radius of r=0.903±0.052REarthr = 0.903 \pm 0.052 R_{\rm Earth}, and is likely terrestrial based on the observed mass-radius distribution of small exoplanets at similar insolations. The star is 14.008 pc away and we estimate its mass and radius to be M=0.159±0.014MSunM = 0.159 \pm 0.014 M_{\rm Sun} and R=0.1895±0.0079RSunR = 0.1895 \pm 0.0079 R_{\rm Sun}, respectively. The star is distinctive in its very short rotational period of Prot=17.4264+/0.0094P_{\rm rot} = 17.4264 +/- 0.0094 hours and correspondingly small Rossby number of 0.007 as well as its high X-ray-to-bolometric luminosity ratio of LX/Lbol=0.0028L_X / L_{\rm bol} = 0.0028 based on a serendipitous XMM-Newton detection during a slew operation. This is consistent with the X-ray emission being observed at a maximum value of LX/Lbol103L_X / L_{\rm bol} \simeq 10^{-3} as predicted for the most rapidly rotating M dwarfs. TOI 540 b may be an alluring target to study atmospheric erosion due to the strong stellar X-ray emission. It is also among the most accessible targets for transmission and emission spectroscopy and eclipse photometry with JWST, and may permit Doppler tomography with high-resolution spectroscopy during transit. This discovery is based on precise photometric data from TESS and ground-based follow-up observations by the MEarth team.Comment: 18 pages, 7 figures. Accepted for publication in The Astronomical Journa

    Characterization and application of a sterol esterase immobilized on polyacrylate epoxy-activated carriers (DilbeadsTM)

    Get PDF
    The sterol esterase from the ascomycete Ophiostoma piceae was immobilized on novel polyacrylate-based epoxy-activated carriers (DilbeadsTM). Six supports with particle sizes between 120-165 micrometers were prepared varying the composition of monomers, crosslinkers and porogens. Their surface areas and porosities were determined by N2 adsorption and mercury intrusion porosimetry. The pore volumes ranged from 0.63 to 1.32 cm3/g, but only DilbeadsTM RS and NK had narrow pore size distributions (with maxima at 33.5 and 67.0 nm, respectively). The distribution of the enzyme in the support was studied by fluorescence confocal microscopy. The immobilized esterase on DilbeadsTM TA showed a significant pH and thermal stability and was assayed in the continuous hydrolysis of cholesteryl esters -present in the pulp industry process waters-.We thank Mª Teresa Seisdedos (Centro de Investigaciones Biologicas, CSIC) for help with the confocal microscopy. This research was supported by the Spanish Ministry of Education and Science (Projects BIO2002-00337 and BIO2003-00621) and Comunidad de Madrid (Project S-0505/AMB0100). We thank CSIC for a research fellowshipPeer reviewe

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Involvement in the Regulation of Detoxification Mechanisms

    Get PDF
    Following the physiological complementary/parallel Celis-Plá et al., by inhibiting extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway in detoxification responses mediated by chronic copper (10 µM) in U. compressa. Parameters were taken at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK, JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK (at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione (GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD), thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast, when more than one MAPK pathway were blocked under copper, impairment of detoxification defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification in macroalgae.</jats:p

    Diagnosis and treatment trends in mucopolysaccharidosis I: findings from the MPS I Registry

    Get PDF
    Our objective was to assess how the diagnosis and treatment of mucopolysaccharidosis I (MPS I) have changed over time. We used data from 891 patients in the MPS I Registry, an international observational database, to analyze ages at symptom onset, diagnosis, treatment initiation, and treatment allocation (hematopoietic stem cell transplantation, enzyme replacement therapy with laronidase, both, or neither) over time for all disease phenotypes (Hurler, Hurler–Scheie, and Scheie syndromes). The interval between diagnosis and treatment has become shorter since laronidase became available in 2003 (gap during 2006–2009: Hurler—0.2 year, Hurler–Scheie—0.5 year, Scheie—1.4 years). However, the age at diagnosis has not decreased for any MPS I phenotype over time, and the interval between symptom onset and treatment initiation remains substantial for both Hurler–Scheie and Scheie patients (gap during 2006–2009, 2.42 and 6.71 years, respectively). Among transplanted patients, an increasing proportion received hematopoietic stem cells from cord blood (34 out of 64 patients by 2009) and was also treated with laronidase (42 out of 45 patients by 2009). Conclusions: Despite the availability of laronidase since 2003, the diagnosis of MPS I is still substantially delayed for patients with Hurler–Scheie and Scheie phenotypes, which can lead to a sub-optimal treatment outcome. Increased awareness of MPS I signs and symptoms by primary care providers and pediatric subspecialists is crucial to initiate early treatment and to improve the quality of life of MPS I patients

    Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo

    Get PDF
    Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans

    Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: an MRI investigation

    Get PDF
    Purpose: determine if language disorder in children with autistic disorder (AD) corresponds to abnormalities in hemispheric asymmetries in auditory language cortex. Methods: MRI morphometric study in children with AD (n = 50) to assess hemispheric asymmetries in auditory language cortex. A key region of interest was the planum temporale (PT), which is larger in the left hemisphere in most healthy individuals. Results: (i) Heschl’s gyrus and planum polare showed typical hemisphere asymmetry patterns; (ii) posterior Superior Temporal Gyrus (pSTG) showed significant rightward asymmetry; and (iii) PT showed a trend for rightward asymmetry that was significant when constrained to right-handed boys (n = 30). For right-handed boys, symmetry indices for pSTG were significantly positively correlated with those for PT. PT asymmetry was age dependent, with greater rightward asymmetry with age. Conclusions: results provide evidence for rightward asymmetry in auditory association areas (pSTG and PT) known to subserve language processing. Cumulatively, our data provide evidence for a differing maturational path for PT for lower functioning children with AD, with both pre- and post-natal experience likely playing a role in PT asymmetry
    corecore