358 research outputs found

    Characterization of the SpaCBA Pilus Fibers in the Probiotic Lactobacillus rhamnosus GG

    Get PDF
    Lactobacillus rhamnosus GG is a human intestinal isolate that has been studied intensively because of its probiotic properties. We have previously shown that L. rhamnosus GG produces proteinaceous pili that earlier had been observed only in Gram-positive pathogens (M. Kankainen et al., Proc. Natl. Acad. Sci. U. S. A. 106:17193-17198, 2009). These pili were found to be encoded by the spaCBA gene cluster, and the pilus-associated SpaC pilin was shown to confer on the cells a mucus-binding ability. In addition to the spaCBA cluster, another putative pilus cluster, spaFED, was predicted from the L. rhamnosus GG genome sequence. Herein, we show that only SpaCBA pili are produced by L. rhamnosus, and we describe a detailed analysis of cell wall-associated and affinity-purified SpaCBA pili by Western blotting and immunogold electron microscopy. Our results indicate that SpaCBA pili are heterotrimeric protrusions with a SpaA subunit as the shaft-forming major pilin. Only a few SpaB subunits could be observed in pilus fibers. Instead, SpaB pilins were found at pilus bases, as assessed by immunogold double labeling of thin sections of cells, suggesting that SpaB is involved in the termination of pilus assembly. The SpaC adhesin was present along the whole pilus length at numbers nearly equaling those of SpaA. The relative amount and uniform distribution of SpaC within pili not only makes it possible to exert both long-distance and intimate contact with host tissue but also provides mucus-binding strength, which explains the prolonged intestinal residency times observed for L. rhamnosus GG compared to that of nonpiliated lactobacill

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc

    Covert Waking Brain Activity Reveals Instantaneous Sleep Depth

    Get PDF
    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep

    Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury

    Get PDF
    Cross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands. After forming the CFC-based functional connectivity graphs, we employed a tensor representation and tensor subspace analysis to identify the optimal set of features for subject classification as mTBI or control. Our results showed that controls formed a dense network of stronger local and global connections indicating higher functional integration compared to mTBI patients. Furthermore, mTBI patients could be separated from controls with more than 90% classification accuracy. These findings indicate that analysis of brain networks computed from resting-state MEG with PAC and tensorial representation of connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI

    Gamma Power Is Phase-Locked to Posterior Alpha Activity

    Get PDF
    Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30–70 Hz) is phase-locked to alpha oscillations (8–13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability

    Brain function assessment in different conscious states

    Get PDF
    Background: The study of brain functioning is a major challenge in neuroscience fields as human brain has a dynamic and ever changing information processing. Case is worsened with conditions where brain undergoes major changes in so-called different conscious states. Even though the exact definition of consciousness is a hard one, there are certain conditions where the descriptions have reached a consensus. The sleep and the anesthesia are different conditions which are separable from each other and also from wakefulness. The aim of our group has been to tackle the issue of brain functioning with setting up similar research conditions for these three conscious states.Methods: In order to achieve this goal we have designed an auditory stimulation battery with changing conditions to be recorded during a 40 channel EEG polygraph (Nuamps) session. The stimuli (modified mismatch, auditory evoked etc.) have been administered both in the operation room and the sleep lab via Embedded Interactive Stimulus Unit which was developed in our lab. The overall study has provided some results for three domains of consciousness. In order to be able to monitor the changes we have incorporated Bispectral Index Monitoring to both sleep and anesthesia conditions.Results: The first stage results have provided a basic understanding in these altered states such that auditory stimuli have been successfully processed in both light and deep sleep stages. The anesthesia provides a sudden change in brain responsiveness; therefore a dosage dependent anesthetic administration has proved to be useful. The auditory processing was exemplified targeting N1 wave, with a thorough analysis from spectrogram to sLORETA. The frequency components were observed to be shifting throughout the stages. The propofol administration and the deeper sleep stages both resulted in the decreasing of N1 component. The sLORETA revealed similar activity at BA7 in sleep (BIS 70) and target propofol concentration of 1.2 μg/mL.Conclusions: The current study utilized similar stimulation and recording system and incorporated BIS dependent values to validate a common approach to sleep and anesthesia. Accordingly the brain has a complex behavior pattern, dynamically changing its responsiveness in accordance with stimulations and states. © 2010 Ozgoren et al; licensee BioMed Central Ltd

    Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process

    Get PDF
    ArtĂ­culo de publicaciĂłn ISIBackground: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. Methodology/Principal Findings: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.This research was supported by CONICYT doctoral grant to C.M.H. and by an ECOS-Sud/CONICYT grant C08S02 and FONDECYT 1090612 grant to D.C. and F.A
    • …
    corecore