764 research outputs found

    Adaptive Mesh Refinement for Supersonic Molecular Cloud Turbulence

    Full text link
    We performed a series of three-dimensional numerical simulations of supersonic homogeneous Euler turbulence with adaptive mesh refinement (AMR) and effective grid resolution up to 1024^3 zones. Our experiments describe non-magnetized driven supersonic turbulent flows with an isothermal equation of state. Mesh refinement on shocks and shear is implemented to cover dynamically important structures with the highest resolution subgrids and calibrated to match the turbulence statistics obtained from the equivalent uniform grid simulations. We found that at a level of resolution slightly below 512^3, when a sufficient integral/dissipation scale separation is first achieved, the fraction of the box volume covered by the AMR subgrids first becomes smaller than unity. At the higher AMR levels subgrids start covering smaller and smaller fractions of the whole volume, which scale with the Reynolds number as Re^{-1/4}. We demonstrate the consistency of this scaling with a hypothesis that the most dynamically important structures in intermittent supersonic turbulence are strong shocks with a fractal dimension of two. We show that turbulence statistics derived from AMR simulations and simulations performed on uniform grids agree surprisingly well, even though only a fraction of the volume is covered by AMR subgrids. Based on these results, we discuss the signature of dissipative structures in the statistical properties of supersonic turbulence and their role in overall flow dynamics.Comment: 5 pages, 5 figures, revised versio

    The Two States of Star Forming Clouds

    Full text link
    We examine the effects of self-gravity and magnetic fields on supersonic turbulence in isothermal molecular clouds with high resolution simulations and adaptive mesh refinement. These simulations use large root grids (512^3) to capture turbulence and four levels of refinement to capture high density, for an effective resolution of 8,196^3. Three Mach 9 simulations are performed, two super-Alfv\'enic and one trans-Alfv\'enic. We find that gravity splits the clouds into two populations, one low density turbulent state and one high density collapsing state. The low density state exhibits properties similar to non-self-gravitating in this regime, and we examine the effects of varied magnetic field strength on statistical properties: the density probability distribution function is approximately lognormal; velocity power spectral slopes decrease with field strength; alignment between velocity and magnetic field increases with field; the magnetic field probability distribution can be fit to a stretched exponential. The high density state is characterized by self-similar spheres; the density PDF is a power-law; collapse rate decreases with increasing mean field; density power spectra have positive slopes, P({\rho},k) \propto k; thermal-to-magnetic pressure ratios are unity for all simulations; dynamic-to-magnetic pressure ratios are larger than unity for all simulations; magnetic field distribution is a power-law. The high Alfv\'en Mach numbers in collapsing regions explain recent observations of magnetic influence decreasing with density. We also find that the high density state is found in filaments formed by converging flows, consistent with recent Herschel observations. Possible modifications to existing star formation theories are explored.Comment: 19 pages, 20 figure

    Dispersion of Observed Position Angles of Submillimeter Polarization in Molecular Clouds

    Full text link
    One can estimate the characteristic magnetic field strength in GMCs by comparing submillimeter polarimetric observations of these sources with simulated polarization maps developed using a range of different values for the assumed field strength. The point of comparison is the degree of order in the distribution of polarization position angles. In a recent paper by H. Li and collaborators, such a comparison was carried out using SPARO observations of two GMCs, and employing simulations by E. Ostriker and collaborators. Here we reexamine this same question, using the same data set and the same simulations, but using an approach that differs in several respects. The most important difference is that we incorporate new, higher angular resolution observations for one of the clouds, obtained using the Hertz polarimeter. We conclude that the agreement between observations and simulations is best when the total magnetic energy (including both uniform and fluctuating field components) is at least as large as the turbulent kinetic energy.Comment: revised, accepted version; to appear in The Astrophysical Journal; 20 pages, 2 figures, 2 table

    Voices and Colors of Murano, Italy

    Get PDF
    Title: Voices and Colors of Murano, Italy Author: Stefano G. Padoan This collection of poetry displays the voices and colors of Murano, Italy, where I have spent a lifetime of summers. With this collection, I hope to capture the details of the island as well of the hearts of its’ people

    Scaling Laws and Intermittency in Highly Compressible Turbulence

    Get PDF
    We use large-scale three-dimensional simulations of supersonic Euler turbulence to study the physics of a highly compressible cascade. Our numerical experiments describe non-magnetized driven turbulent flows with an isothermal equation of state and an rms Mach number of 6. We find that the inertial range velocity scaling deviates strongly from the incompressible Kolmogorov laws. We propose an extension of Kolmogorov's K41 phenomenology that takes into account compressibility by mixing the velocity and density statistics and preserves the K41 scaling of the density-weighted velocity v=rho^{1/3}u. We show that low-order statistics of 'v' are invariant with respect to changes in the Mach number. For instance, at Mach 6 the slope of the power spectrum of 'v' is -1.69 and the third-order structure function of 'v' scales linearly with separation. We directly measure the mass dimension of the "fractal" density distribution in the inertial subrange, D_m=2.4, which is similar to the observed fractal dimension of molecular clouds and agrees well with the cascade phenomenology.Comment: 7 pages, 3 figures; in press, AIP Conference Proceedings: "Turbulence and Nonlinear Processes in Astrophysical Plasmas", Waikiki Beach, Hawaii, March 21, 200

    Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials

    Full text link
    Many applications in risk analysis, especially in environmental sciences, require the estimation of the dependence among multivariate maxima. A way to do this is by inferring the Pickands dependence function of the underlying extreme-value copula. A nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of a specific type of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated by analyzing clusters consisting of seven weather stations that have recorded weekly maxima of hourly rainfall in France from 1993 to 2011

    Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    Get PDF
    We employ simulations of supersonic super-Alfvenic turbulence decay as a benchmark test problem to assess and compare the performance of nine astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss convergence of various characteristics for the turbulence decay test and impacts of various components of numerical schemes on the accuracy of solutions. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the magnetic field using the constrained transport method, and using little to no explicit artificial viscosity. Codes which fall short in one or more of these areas are still useful, but they must compensate higher numerical dissipation with higher numerical resolution. This paper is the largest, most comprehensive MHD code comparison on an application-like test problem to date. We hope this work will help developers improve their numerical algorithms while helping users to make informed choices in picking optimal applications for their specific astrophysical problems.Comment: 17 pages, 5 color figures, revised version to appear in ApJ, 735, July 201

    Simulating Supersonic Turbulence in Magnetized Molecular Clouds

    Full text link
    We present results of large-scale three-dimensional simulations of weakly magnetized supersonic turbulence at grid resolutions up to 1024^3 cells. Our numerical experiments are carried out with the Piecewise Parabolic Method on a Local Stencil and assume an isothermal equation of state. The turbulence is driven by a large-scale isotropic solenoidal force in a periodic computational domain and fully develops in a few flow crossing times. We then evolve the flow for a number of flow crossing times and analyze various statistical properties of the saturated turbulent state. We show that the energy transfer rate in the inertial range of scales is surprisingly close to a constant, indicating that Kolmogorov's phenomenology for incompressible turbulence can be extended to magnetized supersonic flows. We also discuss numerical dissipation effects and convergence of different turbulence diagnostics as grid resolution refines from 256^3 to 1024^3 cells.Comment: 10 pages, 3 figures, to appear in the proceedings of the DOE/SciDAC 2009 conferenc
    corecore