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Abstract. We use large-scale three-dimensional simulations of supersonic Euler turbulence to get
a better understanding of the physics of a highly compressible cascade. Our numerical experiments
describe non-magnetized driven turbulent flows with an isothermal equation of state and an rms
Mach number of 6. We find that the inertial range velocity scaling deviates strongly from the
incompressible Kolmogorov laws. We propose an extension ofKolmogorov’s K41 phenomenology
that takes into account compressibility by mixing the velocity and density statistics and preserves the
K41 scaling of the density-weighted velocityv≡ ρ1/3u. We show that low-order statistics ofv are
invariant with respect to changes in the Mach number. For instance, at Mach 6 the slope of the power
spectrum ofv is−1.69 and the third-order structure function ofv scales linearly with separation. We
directly measure the mass dimension of the “fractal” density distribution in the inertial subrange,
Dm ≈ 2.4, which is similar to the observed fractal dimension of molecular clouds and agrees well
with the cascade phenomenology.

Keywords: ISM: structure — hydrodynamics — turbulence — fractals — methods: numerical
PACS: 43.28.Ra 47.27.- 47.40.Ki 47.40.-x 47.53.+n 52.25.Gj 98.58.Ay 98.58.Db

INTRODUCTION

In the late 1930’s, Kolmogorov clearly realized that chances to develop a closed purely
mathematical theory of turbulence are extremely low [1].1 Therefore, the basic approach
in [2, 3] (usually referred to as the K41 theory) was to rely onphysical intuition and
formulate two general statistical hypotheses which describe the universal equilibrium
regime of small-scale fluctuations in arbitrary turbulent flow at high Reynolds number.
Following the Landau (1944) remark on the lack of universality in turbulent flows [4],
and with information extracted from new experimental data,the original similarity hy-
potheses of K41 were then revisited and refined to account forintermittency effects
[5, 6, 7]. While the K41 phenomenology became the cornerstone for all subsequent de-
velopments in incompressible turbulence research [e.g., 8], there was no similar result
established for compressible flows yet [9, 10]. Historically, compressible turbulence re-
search, preoccupied with a variety of specific engineering applications, was generally

1 “An understanding of solutions to the [incompressible] Navier-Stokes equations” yet remains one of the
six unsolved grand challenge problems nominated by the ClayMathematics Institute in 2000 for a $1M
Millennium Prize[http://www.claymath.org/millennium/].
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FIGURE 1. Time average compensated power spectra (left) and third-order transverse structure func-
tions (right) for velocity u and mass-weighted velocitiesv ≡ ρ1/3u andw ≡ ρ1/2u. The statistics ofv
clearly demonstrate a K41-like scaling. Notice strong bottleneck contamination in the spectra at high
wavenumbers.

lagging behind the incompressible developments.2 The two major reasons for this time
lag were an additional complexity of analytical treatment of compressible flows and a
shortage in experimental data for super- and hypersonic turbulence. In this respect, al-
though limited to relatively low Reynolds numbers, direct numerical simulations (DNS)
of turbulence (pioneered by Orszag and Patterson [14]) haveoccupied the niche of ex-
periments at least for the most simple flows. One particularly important advantage of
DNS is an easy access to variables that are otherwise difficult to measure in the labora-
tory or treat analytically.

A traditionally straightforward approach to data analysisfrom DNS of compressible
turbulence includes computation of the “standard” statistics of velocity fluctuations. In
addition, the diagnostics for density fluctuations are alsocomputed and discussed as the
direct measures of compressibility. Quite naturally, bothdensity and velocity statistics
demonstrate strong dependence on the Mach numberM in supersonic (M ∈ [1,3]) and
hypersonic (M > 3) regimes, while the variations in turbulent diagnostics at sub- or
transonic Mach numbers are rather small.

Based on the data from numerical experiments, it is well established that: (i) the
velocity power spectra tend to get steeper as the Mach numberincreases, reaching the
Burgers slope of−2 asymptotically [16, and references therein]; (ii) the density power
spectra instead get shallower at high Mach numbers, approaching a slope of−1 or even
shallower [15]; (iii) the density PDF in isothermal turbulent flows is well represented by
a lognormal distribution [16, and references therein]; (iv) the dimensionality of the most
singular velocity structures increases fromDs,u ∼ 1 in a subsonic regime toDs,u ∼ 2
in highly supersonic [17]; (v) the mass dimension of the turbulent structures decreases
from Dm = 3 in weakly compressible flows toDm ∼ 2.5 in highly compressible [18].

How can we combine these seemingly disconnected pieces of information into a

2 A reasonable measure of the delay is 60+ years passed betweenthe appearance of incompressible
Reynolds averaging [11] and mass-weighted Favre averagingfor fluid flows with variable density [12],
although see [13] for references to a few earlier papers thatdealt with density-weighted averaging.



coherent physical picture to improve our understanding of compressible turbulence?
One way to do this is to consider a phenomenological concept of a lossycompress-
ible turbulent cascade that would asymptotically match theincompressible Kolmogorov-
Richardson energy cascade [2, 19] in the limit of very low Mach numbers. Since incom-
pressible turbulence represents a degenerate case where the density is uncorrelated with
the velocity, the phenomenology of the compressible cascade must include this correla-
tion. This essentially means that instead of velocity, which is a single key ingredient of
the K41 laws, one needs to consider a set of mixed variables,ρ1/ηu, whereη can take
values 1, 2, or 3 depending on the statistical measure of interest [18]. For instance, if one
is studying the scale-by-scale kinetic energy budget in a compressible turbulent flow, a
mixed variable power spectrum withη = 2 would be an appropriate choice. To deal with
the kinetic energy flux through the hierarchy of scales within the inertial range, the key
mixed variable would be the one withη = 3.

How will these mixed statistics scale in the inertial range of highly compressible tur-
bulent flows? Will their scaling depend on the Mach number? Can the K41 phenomenol-
ogy be extended to cover hypersonic turbulent flows? These and other related questions
are in detail discussed in [18] based on large scale simulations of isotropic supersonic
turbulence with resolution up to 20483 grid zones. In this paper we present the highlights
of the compressible cascade phenomenology verified in [18].

SCALING, STRUCTURES, AND INTERMITTENCY

Nonlinear interactions transfer kinetic energy supplied to the system at large scales
through the inertial range with little dissipation. Let us assume that the meanvolume
energy transfer rate in a compressible fluid,ρu2u/ℓ, is constant in a statistical steady
state [e.g., 20]. If this is true, then

vp ≡ (ρ1/3u)p ∼ ℓ p/3 (1)

for an arbitrary powerp and, with the standard assumption of self-similarity of the
cascade, the structure functions (SFs) of mixed variablev for compressible flows should
scale in the inertial range as

Sp(ℓ)≡ 〈|v(r + ℓ)−v(r)|p〉 ∼ ℓ p/3. (2)

In the limit of weak compressibility, the scaling laws (2) will reduce to the K41
results for the velocity structure functions. The scaling lawsSp(ℓ) ∼ ℓζp, whereζp =
p/3 are not necessarily exact. As the incompressible K41 scaling, they are subject to
“intermittency corrections”, e.g.ζp= p/3+τp/3 [5]. The only exception is, perhaps, the
third order relation for the longitudinal velocity SFs, which is exact in the incompressible
case and is known as thefour-fifth law [3]. Our focus here is mostly on the low order
statistics (p≤ 3) for which the corrections are small. Since the power spectrum slope is
related to the exponent of the second order structure function, the K41 slope of 5/3 is
expected to hold forv≡ ρ1/3u in the compressible case.

Figure 1 shows the power spectra ofu, v, andw≡ ρ1/2u and the corresponding third-
order transverse structure functions based on the simulations at Mach 6 [23, 18]. The
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FIGURE 2. Gas massM(ℓ) as a function of the box sizeℓ (left). The mass dimensionDm is defined as
the log-log slope ofM(ℓ), see eq. (4). Relative exponents for structure functions ofthe transverse modified
velocitiesv versus orderp and the best-fit hierarchical structure model [HS, 6] forp ∈ [0, 3] (right).
Also shown are model predictions for the Kolmogorov-Richardson cascade [K41, 2, 3], for intermittent
incompressible turbulence [SL94, 6], for “burgulence” [Burg, 21], and for the velocity fluctuations in
supersonic turbulence [B02, 22].

power spectrumΣ(k) and the structure function ofv clearly follow the K41 scaling:
Σ ∼ k−1.69 and S3 ∼ ℓ1.01 [18], while the velocity power spectrumE (k) and struc-
ture function have substantially steeper-then-K41 slopes: −1.95 and 1.29 [23]. At the
same time, the kinetic energy spectrumE ∼ k−1.53 is shallow and both solenoidal and
dilatational components ofw have the same slope implying a single compressible en-
ergy cascade with strong interaction between the two components [18]. These results
based on the high dynamic range simulations lend strong support to the scaling relations
described by eq. (2) and to the conjecture from which they were inferred. Previous sim-
ulations at lower resolution did not allow to measure the absolute exponents reliably due
to insufficient dynamic range and due to the bottleneck contamination [24].

In 1951, von Weiszäker [25] introduced a phenomenological model for scale-invariant
hierarchy of density fluctuations in compressible turbulence described by a simple
equation that relates the mass density at two successive levels to the corresponding scales
through a universal measure of the degree of compression,α,

ρn/ρn−1 = (ℓn/ℓn−1)
−3α . (3)

The geometric factorα takes the value of 1 in a special case of isotropic compression
in three dimensions, 1/3 for a perfect one-dimensional compression, and zero in the
incompressible limit. From equations (1) and (3), assumingmass conservation, Fleck
[26] derived a set of scaling relations for the velocity, specific kinetic energy, density,
and mass:

u∼ ℓ1/3+α , E (k)∼ k−5/3−2α , ρ ∼ ℓ−3α , M(ℓ)∼ ℓDm ∼ ℓ 3−3α , (4)

where all the exponents depend on the compression measureα which is in turn a
function of the rms Mach number of the turbulent flow. We can now use the data from
numerical experiments to verify the scaling relations (4).Since the first-order velocity
structure function scales asℓ0.54 [18], we can estimateα for the Mach 6 flow,α ≈ 0.21.



FIGURE 3. Coherent structures in Mach 6 turbulence at resolution of 10243. Projections along the
minor axis of a subvolume of 700×500× 250 zones for the density (upper left), the enstrophy (upper
right), the dissipation rate (lower left), and the dilatation (lower right). The logarithmic grey-scale ramp
shows the lower values as dark in all cases except for the density. The inertial subrange structures
correspond to scales between 40 and 250 zones and represent afractal with Dm ≈ 2.4. The dominant
structures in the dissipation range (ℓ < 30∆) are shocks withDm = 2. [Reprinted from [18].]

Using the last relation in (4), we can calculate the mass dimension for the density
distribution,Dm≈ 2.38. It is indeed consistent with our direct measurement of the mass
dimension for the same range of scales,Dm ≈ 2.39, see Fig. 2.

In strongly compressible turbulence at Mach 6, the density contrast between superson-
ically moving blobs and their more diffuse environment can be as high as 106. The most
common structural elements in such highly fragmented flows are nested bow-shocks
[15]. Figure 3 shows an extreme example of structures formedby a collision of counter-
propagating supersonic flows. On small scales within the dissipative range, these struc-
tures are characterized byDm= 2, while within the inertial rangeDm≈ 2.4 (Fig. 2,left).
The hierarchical structure (HS) model for the mass-weighted velocityv

ζp/ζ3 = γ p+C(1−β p) (5)

[6] predicts the codimension of the support of the most singular dissipative structures
C ≡ 3−Ds,v = (1− 3γ)/(1− β 3) = 1.5 (Fig. 2 right). The best-fit parameters of the
model:β 3 = 1/3 (a measure of intermittency) andγ = 0 (a measure of singularity of
structures) correspond to a hybrid between the B02 model forthe velocity fluctuations
(β 3

B02 = 1/3, γB02 = 1/9) [22] and the Burgers’ model (βBurg = 0, γBurg = 0) [21].
Thus, Mach 6 turbulence appears to be more intermittent thanincompressible turbulence
(β 3

SL94 = 1/9) and has the same degree of singularity of structures as burgulence. The
dissipative structures with fractal dimensionDs,v = 1.5 can be conceived as perforated



sheets reminiscent of the Sierpinski sieve. Since the levelof noise in high order statistics
remains high even at a resolution of 10243 grid points, larger dynamic range simulations
are needed to determine the parameters of the HS model with better confidence limits.

CONCLUSION

Using large-scale Euler simulations of supersonic turbulence at Mach 6 we have demon-
strated that there exists an analogue of the K41 scaling lawsvalid for both weakly and
highly compressible flows. The mass-weighted velocityv ≡ ρ1/3u – the primary vari-
able governing the energy transfer through the cascade – should replace the velocity in
intermittency models for compressible flows at high Mach numbers.

ACKNOWLEDGMENTS

This research was partially supported by a NASA ATP grant NNG056601G, by NSF
grants AST-0507768 and AST-0607675, and by NRAC allocations MCA098020S and
MCA07S014. We utilized computing resources provided by theSan Diego Supercom-
puter Center and by the National Center for Supercomputer Applications.

REFERENCES

1. A. N. Kolmogorov,Selected Papers on Mathematics and Mechanics, Moscow: Nauka, 1985, p. 421.
2. A. N. Kolmogorov,Dokl. Akad. Nauk SSSR30, 299 (1941).
3. A. N. Kolmogorov,Dokl. Akad. Nauk SSSR32, 19 (1941).
4. L. D. Landau, and E. M. Lifshitz,Fluid Mechanics, Pergamon Press, 1987, §34, p. 140.
5. A. N. Kolmogorov,J. Fluid Mech.13, 82 (1962).
6. Z.-S. She, and E. Leveque,Phys. Rev. Lett.72, 336 (1994).
7. B. Dubrulle,Phys. Rev. Lett.73, 959 (1994).
8. U. Frisch,Turbulence. The legacy of A.N. Kolmogorov, Cambridge University Press, 1995.
9. S. K. Lele,Annu. Rev. Fluid Mech.26, 211 (1994).
10. R. Friedrich,Z. Angew. Math. Mech.87, 189 (2007).
11. O. Reynolds,Phil. Trans. Roy. Soc. London186, 123 (1895).
12. A. Favre,C. R. Acad. Sci., Paris, Ser. A246, 2576, 2723, 2839, 3216 (1958).
13. J. L. Lumley, and A. M. Yaglom,Flow, Turbulence and Combustion66, 241 (2001).
14. S. A. Orszag, and G. S. Patterson,Phys. Rev. Lett.28, 76 (1972).
15. A. G. Kritsuk, M. L. Norman, and P. Padoan,ApJL638, L25 (2006).
16. D. Biskamp,Magnetohydrodynamic Turbulence, Cambridge University Press, 2003.
17. P. Padoan, R. Jimenez, Å. Nordlund, and S. Boldyrev,Phys. Rev. Lett.92, 191102 (2004).
18. A. G. Kritsuk, M. L. Norman, P. Padoan, and R. Wagner,ApJ in press,arXiv:0704.3851 (2007).
19. L. F. Richardson,Weather Prediction by Numerical Process, Cambridge University Press, 1922.
20. M. J. Lighthill, inGas Dynamics of Cosmic Clouds, 1955,Proc. 2nd IAU Symposium, p. 121.
21. J. Bec, and K. Khanin, submitted toPhysics Reports,arXiv:0704.1611 (2007).
22. S. Boldyrev,ApJ569, 841 (2002).
23. A. G. Kritsuk, R. Wagner, M. L. Norman, and P. Padoan, inNumerical Modeling of Space Plasma

Flows, eds. G. P. Zank, and N. V. Pogorelov ,ASP Conference Series359, 84 (2006).
24. V. E. Zakharov, V. S. L’vov, and G. Falkovich,Kolmogorov spectra of turbulence I: Wave turbulence,

Berlin: Springer, 1992.
25. C. F. von Weizsäcker,ApJ114, 165 (1951).
26. R. C. Fleck, Jr.,ApJ458, 739 (1996).


	Introduction
	Scaling, Structures, and Intermittency
	Conclusion

