603 research outputs found

    Management of a Fungal Perinephric Abscess (PNA): Dilemma Revisited

    Get PDF
    ABSTRACT Candida species can cause a wide variety of clinical syndromes, especially in immunocompromised and diabetic patients. Primary perirenal candidial abscess has been a rare reported entity. Here we report a rare case of primary PNA due to Candida species in an immunocompetent patient with diabetes mellitus and its minimal invasive management. Retrospective and prospective analysis of clinical, laboratory and radiological records along with continued follow up of patient was done. This patient was 48-year-old man, admitted with burning in micturition, right flank discomfort and low grade fever since 1 year. Abdominal ultrasound and computerized tomography were suggestive of a PNA of the right kidney. Candida species was isolated from sample obtained by C.T. guided needle aspiration. Culture of aspirate showed sensitivity to azoles. Systemic antifungal therapy based on culture report was started in form of oral drug. The patient responded well leading to resolution of lump and the fever. Appropriate timely treatment appears to be having a promising role in definitive therapy for renal and PNA due to Candida even in immunocompetent host with predisposing factors such as diabetes mellitus. This case highlights the fact that fungal infections should be included in the differential diagnosis of PNA in such patients

    On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm

    Get PDF
    N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function © 2010 Marcos et al

    Source of Previous Treatment for Re-Treatment TB Cases Registered under the National TB Control Programme, India, 2010

    Get PDF
    BACKGROUND: In 2009, nearly half (289,756) of global re-treatment TB notifications are from India; no nationally-representative data on the source of previous treatment was available to inform strategies for improvement of initial TB treatment outcome. OBJECTIVES: To assess the source of previous treatment for re-treatment TB patients registered under India's Revised National TB control Programme (RNTCP). METHODOLOGY: A nationally-representative cross sectional study was conducted in a sample of 36 randomly-selected districts. All consecutively registered retreatment TB patients during a defined 15-day period in these 36 districts were contacted and the information on the source of previous treatment sought. RESULTS: Data was collected from all 1712 retreatment TB patients registered in the identified districts during the study period. The data includes information on 595 'relapse' cases, 105 'failure' cases, 437 'treatment after default (TAD)' cases and 575 're-treatment others' cases. The source of most recent previous anti-tuberculosis therapy for 754 [44% (95% CI, 38.2%-49.9%)] of the re-treatment TB patients was from providers outside the TB control programme. A higher proportion of patients registered as TAD (64%) and 'retreatment others' (59%) were likely to be treated outside the National Programme, when compared to the proportion among 'relapse' (22%) or 'failure' (6%). Extrapolated to national registration, of the 292,972 re-treatment registrations in 2010, 128,907 patients would have been most recently treated outside the national programme. CONCLUSIONS: Nearly half of the re-treatment cases registered with the national programme were most recently treated outside the programme setting. Enhanced efforts towards extending treatment support and supervision to patients treated by private sector treatment providers are urgently required to improve the quality of treatment and reduce the numbers of patients with recurrent disease. In addition, reasons for the large number of recurrent TB cases from those already treated by the national programme require urgent detailed investigation

    Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Get PDF
    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic (MHD), incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted

    Neoplastic transformation of breast epithelial cells by genotoxic stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to genotoxic stresses such as radiation and tobacco smoke can cause increased cancer incidence rate as reflected in an in depth meta-analysis of data for women and breast cancer incidence. Published reports have indicated that exposures to low dose radiation and tobacco smoke are factors that contribute to the development of breast cancer. However, there is a scarcity of information on the combinatorial effects of low dose radiation and tobacco smoke on formation and progression of breast cancer. The combination of these two genotoxic insults can induce significant damage to the genetic material of the cells resulting in neoplastic transformation.</p> <p>Methods</p> <p>To study the effects of low dose ionizing radiation and tobacco smoke on breast cells, MCF 10A cells were treated either with radiation (Rad - 0.1 Gray) or cigarette smoke condensate (Csc - 10 microgram/ml of medium) or a combination of Rad + Csc. Following treatments, cells were analyzed for cell cycle distribution patterns and the ability to extrude the Hoechst 33342 dye. In addition, <it>in vitro </it>invasion and migration as well as mammosphere formation assays were performed. Finally, differential gene expression profiles were generated from the individual and combination treatment.</p> <p>Results</p> <p>Exposure of MCF 10A cells to the combination of radiation plus cigarette smoke condensate generated a neoplastic phenotype. The transformed phenotype promoted increased mammosphere numbers, altered cell cycle phases with a doubling of the population in S phase, and increased invasion and motility. Also, exclusion of Hoechst 33342 dye, a surrogate marker for increased ABC transporters, was observed, which indicates a possible increase in drug resistance. In addition, changes in gene expression include the up regulation of genes encoding proteins involved in metabolic pathways and inflammation.</p> <p>Conclusions</p> <p>The results indicate that when normal breast cells are exposed to low dose radiation in combination with cigarette smoke condensate a phenotype is generated that exhibits traits indicative of neoplastic transformation. More importantly, this is the first study to provide a new insight into a possible etiology for breast cancer formation in individuals exposed to low dose radiation and tobacco smoke.</p

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Community mobilisation with women's groups facilitated by Accredited Social Health Activists (ASHAs) to improve maternal and newborn health in underserved areas of Jharkhand and Orissa: study protocol for a cluster-randomised controlled trial

    Get PDF
    Background: Around a quarter of the world's neonatal and maternal deaths occur in India. Morbidity and mortality are highest in rural areas and among the poorest wealth quintiles. Few interventions to improve maternal and newborn health outcomes with government-mandated community health workers have been rigorously evaluated at scale in this setting.The study aims to assess the impact of a community mobilisation intervention with women's groups facilitated by ASHAs to improve maternal and newborn health outcomes among rural tribal communities of Jharkhand and Orissa.Methods/design: The study is a cluster-randomised controlled trial and will be implemented in five districts, three in Jharkhand and two in Orissa. The unit of randomisation is a rural cluster of approximately 5000 population. We identified villages within rural, tribal areas of five districts, approached them for participation in the study and enrolled them into 30 clusters, with approximately 10 ASHAs per cluster. Within each district, 6 clusters were randomly allocated to receive the community intervention or to the control group, resulting in 15 intervention and 15 control clusters. Randomisation was carried out in the presence of local stakeholders who selected the cluster numbers and allocated them to intervention or control using a pre-generated random number sequence. The intervention is a participatory learning and action cycle where ASHAs support community women's groups through a four-phase process in which they identify and prioritise local maternal and newborn health problems, implement strategies to address these and evaluate the result. The cycle is designed to fit with the ASHAs' mandate to mobilise communities for health and to complement their other tasks, including increasing institutional delivery rates and providing home visits to mothers and newborns. The trial's primary endpoint is neonatal mortality during 24 months of intervention. Additional endpoints include home care practices and health care-seeking in the antenatal, delivery and postnatal period. The impact of the intervention will be measured through a prospective surveillance system implemented by the project team, through which mothers will be interviewed around six weeks after delivery. Cost data and qualitative data are collected for cost-effectiveness and process evaluations
    corecore