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Abstract 

Comparative analyses have been completed on hollow and solid E-type glass fibers. Single 

fiber tensile tests were performed and correlations have been determined between the 

geometry and the tensile strength of the fibers. The flexural properties of the solid and the 

hollow fibers have been determined with deflection tests. The hollow glass fibers showed 

higher tensile strength and flexural rigidity than the solid glass fibers in the case of similar 

outer diameter. The hollow fibers were filled with the help of capillary effect, and the filling 

process was examined as a function of the viscosity and the contact angle between glass and 

fluids. Relationship has been detected between fiber filling speed and the inner diameter of 

the fibers, and the filling speed was increased by the lower viscosity and contact angle. 

 

Keywords 

Hollow glass fiber, fiber tensile strength, fiber flexibility, filling by capillary effect 

 

Introduction 
The use of fiber reinforced polymer composites increases rapidly thanks to the innovation of 

the material and the geometry of the fibers. The most frequently used fibers are glass, carbon 

and aramid fibers, but the use of basalt, flax, hemp and thermoplastic fibers also increases 

significantly [1-3]. Beside the development of the fiber material many researchers have been 



working on optimising the cross section shape [4-6]. Kim and Park [7] compared concrete 

reinforced by C-shaped, solid and hollow carbon fiber. They showed that C-shape carbon 

fiber reinforced concrete has 40% higher tension and bending stiffness, than the ones 

reinforced by solid or hollow carbon fiber. They explained the better properties in case of the 

C-shape cross sectional reinforcement by the bigger linking surface to the matrix. Park et al. 

[8] analysed the reinforcement effect of the conventional solid, C-shaped, and hollow fibers in 

epoxy matrix. The C-shaped fiber was shown to provide 40-50% higher mechanical 

properties, greater damping factor than those provided by the solid or hollow reinforcing 

fibers. These were explained by the high surface to volume ratio, which means larger contact 

area between the reinforcing fiber and the matrix. Beyerlein et al. [9] applied bond shaped 

fibers to prevent fiber pulling out, and the fiber length, the size and shape of fiber ends were 

optimised. By the effect of bigger fiber ends the toughness of composites can be improved, 

since fiber pulling out happens at a higher load. Bond et al. [10] compared glass fibers with 

triangular and circular cross sections by single fiber tensile tests. It was shown that tensile 

strength of triangular glass fibers is higher by 25% than that of the conventional circular glass 

fibers. Compression tests were performed on micro composite specimens reinforced by 12-15 

filaments, and triangular fiber reinforcement ensured 60% higher compression strength than 

conventional fiber reinforcement, which was explained by the fact that the triangular fibers 

could not be packed tightly and hence resulting in higher moment of inertia. Mechanical tests 

were performed on composite specimens, and the composites reinforced by triangular fibers 

showed 20% higher tensile strength, 40% higher compressional strength and 5% higher 

interlaminar strength than the conventional circular fiber reinforced composites. 

Among the novel fiber geometries the spreading of hollow fibers is the most notable due to 

the more advantageous mechanical properties than the conventional fibers [11], and the 

storing function [12]. There are some patents in the literature on the hollow fiber standardised 

manufacturing methods [13-15]. Hucker et al. [16] fabricated solid and hollow glass fibers 

from glass preforms under laboratory conditions and examined the effects of the 

manufacturing conditions on the tensile strength. The material composition of the solid and 

hollow preform was the same with a minimal difference. Tensile strength of solid fibers 

decreased with increasing fiber diameter. The strength of the solid fibers decreased with 

decreasing drawing speed and increased with temperature. Higher strength could be reached 

in case of the hollow fibers by increasing the drawing tension, namely the feeding of the 

preform was decelerated as much as possible, the viscosity of the drawn glass was increased 

by decreasing the furnace temperature and the drawing speed was set to the minimum. It was 



shown that the tensile strength could be increased by increasing the ratio of the inner and the 

outer diameter of the fibers. 

Beside the advantageous mechanical properties the hollow fibers could be used as a 

membrane [17, 18], together with stored liquids in composites. Fibers could be filled by 

indicator liquids which would flow onto the surface after cracking, thus the condition of the 

structure could be checked easily [19, 20]. Hollow fibers could also be filled by a healing 

agent, and after the breakage of the fiber this liquid could flow into the crack and this could 

stop the propagation of the crack by cross linking there [21-23]. 

The aim of this article is to compare the mechanical properties of the solid and hollow glass 

fibers. The analysis of the hollow fiber filling ability is demonstrated with different viscosity 

liquids and the influence of the viscosity and contact angle on the filling speed is also shown. 

The goal of this study was to learn the effect of the hollowness of the hollow fibers on the 

mechanical properties and the filling ability of them, because they could be used for weight 

reduction on composite structures or for self-repairing composites. 

 

Materials and test methods 
Fibers 

The hollow fibers were purchased from R&G Faserverbundwerkstoffe GmbH (Germany), the 

diameter of which was nominally 10-12 µm. Solid fibers were provided by 3b Fiberglass 

(Belgium) with a nominal diameter of 10 µm. 

The accurate chemical composition was defined with inductively coupled plasma optical 

emission spectrometry (ICP-OES) method and it was established that among the components 

there wasn’t significant difference, the main components are 60% SiO2, 23% CaO, 11% 

Al2O3 and 6% others. 

 

Determination of the fiber’s diameter and the tensile strength. The measurement of the 

diameter of the single filaments and the test specimens was executed with an Olympus BX 

51M (Japan) optical microscope with 50x magnification illuminated from below. Photographs 

were prepared with a C-5060 CAMEDIA type digital camera, and the fiber diameter 

measurement was done with AnalySIS image processor software. Every test specimen was 

measured at three places equally divided along the fiber length. Both the internal and external 

diameter of the hollow fibers could be measured when focusing right onto the middle of the 

fiber cross section.  



The fiber tensile tests were executed according to the EN ISO 5079 [24] standard, on 100 

pieces of each fiber type with a 25 mm clamping length. The tests were performed using a 

Zwick Z005 universal tester at a speed of 2 mm/min. As the fiber diameters are known, 

supposing a circular fiber cross section at all fibers, the cross sectional area could be 

calculated. Reading the fiber tension force (Fft) the fiber tensile strength (σft) could be 

calculated, and on the basis of the breaking elongation the breaking strain was calculated. The 

Young modulus (Ef) was calculated from the gradient of the tensile curve on the 0.05 and 

0.25% relative strain interval. 

 

Determination of fiber deflection. The fiber flexibility could be characterized by the 

measurement of the fiber deflection. A 50 mm long fiber was clamped in front of a measuring 

rod (Figure 1) and the so clamped fiber was put into a glass box, which is free from all air 

motion, to help determining the value of the deflection. 

 

 
Figure 1. Arrangement of the fiber deflection measurement. 1 – clamping; 2 – fiber;  

3 – measuring rod. (single cantilever setup) 

 

The Young modulus could not be calculated by the simple fiber end displacement, because in 

consequence of the extensive flexural deflection the loading becomes nonlinear. There are 

several methods to calculate large deflection of a beam [25], and we used the one defined by 

Holden [26]. The equation of Holden is for a nonlinear, extensive bending deflection for a 

beam which is loaded along the length and clamped fixed on one end is seen in Equation 1: 
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If the length of the fiber (L (mm)), the rate of the deflection (δ (mm)) and the value of the 

load (w (N/m)) was known, then the flexural rigidity (D (Nm2)) of the fiber could be defined. 

The value of „k” was defined by the ratio of δ/L and a k(δ/L) curve that was suggested by 

Holden [26]. The fibers were fixed with a tape on a horizontal surface, and the length of the 

fiber was always set to 50 mm. The fiber deflection was determined with the aid of the 

measuring rod as it is seen in Figure 1, thus the value of „k” could be defined. Every fiber 

diameter was measured at 3 points, and the cross sectional area was calculated by the average 

diameter, then the fiber mass was determined by the density of glass, which was considered 

for this single cantilever flexture. The bending elasticity modulus can be calculated by 

Equation 2: 
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where Efb is the fiber flexural modulus, I is the moment of inertia. The calculation method 

defined by Holden corresponding with the Euler-Bernoulli beam theory [26]. 

 

Filling of the hollow fibers with resin 

Hollow fibers were filled with different resin components and hardeners. The fibers were laid 

onto a glass plate scratched in every 10 mm, and the fibers were cut at the 0 and the 50 mm 

line (demonstrated later). The glass plate was placed under an Olympus BX 51M optical 

microscope (Japan) with the fiber on it, and a resin drop was placed to the end of the fiber. 

The fibers begun to suck the resin by the capillary action and after every 10 mm the time 

passed was recorded since the dropping. The temperature of the measurement was 23°C. 

Different laminating and injecting resins were used for fiber filling. Different resin systems 

were chosen in order to examine the affecting action of the viscosity. The properties of the 

resin systems are seen in Table 1 

 

Resin component 

(A) 

Curing agent     

(B) 

Mixing ratio    

A:B 

Potlife 

(min) 

Ipox MS90 A Ipox MS90 B 100:33 570 

Ciba LY 5082 Ciba HY 5083 100:23 100 



Eporezit AH12 Eporezit T58 100:40 100 

Table 1. Applied resin systems 

 

The measurement of the dynamic viscosity was executed with an AR2000ex rheometer 

(USA). Resin film was placed between a rotating and a fixed plate, and the dynamical 

viscosity was defined by the rotating resistance. The measurement was completed at a 

constant temperature of 23°C. 

The contact angle was defined by the help of a Ramé-Hart NRL C.A. 100 goniometer (USA) 

at room temperature (23°C). A resin drop was placed onto a glass plate having chemical 

components corresponding to the components of the glass fibers. The contact angle could be 

read with the help of scale by focusing on the edge of the resin drop by a microscope. 

Averaging the results of the measurements of each liquid the mean contact angle between the 

glass plate and the liquid was given. Before each measurement the glass plates were cleaned 

with acetone.  

The shear rate of the streaming ideal liquids was calculated by the reordered Hagen–Poiseuille 

Equation 3 [27]: 
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where γ is the shear rate, v is the speed of the liquid front, di is the internal diameter of the 

hollow fiber. 

 

Results and discussion 
Fiber tensile test 

For better understanding, the fiber cross-sectional filling factor (FCF) was adopted, which 

indicates the cross sectional area surface ratio of the hollow fiber (Equation 4). 
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where Ao is the cross sectional area calculated by the outer diameter, Ai is the cross sectional 

area of the hollow, do is the outer diameter, and di  is the internal diameter. 



The geometrical and fiber tension examinations were executed as it is written in chapter 

Materials and test methods. The tensile strength distribution of the fibers was described by the 

two-parameter Weibull [28] distribution (Equation 5). 

 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

wb

w

ft
ft a

F
σ

σ exp1  (5) 

 

where aw is the scale factor (Weibull stiffness), and bw is the Weibull modulus. The tensile 

strength values were ordered to increasing sequence, and the row number (i) of the so ordered 

stiffness was divided by the number of all measurements (n). The points calculated so were 

plotted creating an empirical distribution function and curve was fitted on by Equation 5 

(Figure 2). 

 

 
Figure 2. The distribution function of the tensile tests of solid and hollow fibers 

 

The correlation coefficient of the fittings is 0.99 in the case of both the hollow and the solid 

fibers, which is an acceptable accurate fitting. The results are seen in Table 2. 

 



 
Diameter    

(µm) 

FCF        

(-) 

Tensile force  

(N) 

Tensile 

strength        

(MPa) 

Young 

modulus 

(GPa) 

Weibull 

strength 

parameter   

(MPa) 

Weibull 

modulus 

parameter 

(-) 

Solid 

fibers 
12.82±0.90 1 0.165±0.0315 1091.1±345.5 44.96±4.19 1278.13 3.12 

Hollow 

fibers 
12.10±1.78 0.625±0.093 0.136±0.0336 2129.6±561.2 73.83±16.48 2307.23 4.55 

Table 2. The mean values and the empirical standard deviation of the fiber parameters and the 

tensile strength properties 

 

While the parameters of the distribution function are known, the expected value (E(σft)) and 

the standard deviation (V(σft)) of tensile strength determined by the fitted Weibull distribution 

could be calculated by Equations 6 and 7: 
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The results of the calculations are seen in Table 3. 

 

Tensile strength (MPa) 

 Expected 

value 

Standard 

deviation 

Solid fibers 1143 401 

Hollow fibers 2107 525 

Table 3. The expected value and standard deviation of the tensile strength of each fiber 

defined by Weibull distribution factors  

 

The breaking force of the hollow fibers is smaller than the one of the solid fibers, but the 

tensile strength is higher by 95%. There are more reasons of it. In the case of smaller wall 

thickness there are less defects in the cross section, which means higher strength and elastic 



modulus. The smaller thickness means also the higher orientation of the molecular chains 

[29], which also increases the mechanical properties. The tensile strength is plotted as a 

function of the FCF, and trend line fitted onto the points, it is seen that in the examined region 

the fiber tensile strength increases with decreasing FCF (Figure 3). 
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Figure 3. Tensile strength as a function of FCF. 

 

The solid circle shows the mean tensile strength and the scatter of the solid fibers. The 

decreasing FCF means smaller wall thickness of the fiber, which causes higher strength and 

elastic modulus, as it is well seen with the aid of the trend line. 

 

Fiber flexibility analysis 

The holes of the hollow fibers are not concentric with the outer diameter, which causes 

inaccuracy when measuring fiber deflection. The SEM shot on the polished surface of fiber 

cross sections embedded into resin can be seen in Figure 4. 

 



 
Figure 4. SEM shot on the polished surface of the fiber cross section embedded into resin. 

 

The outer and the internal diameters of the fibers were defined before the determination of 

fiber deflection with optical microscope, which is not able to detect the portion of the 

eccentricity. If the eccentricity would be known, the fixing position of the fiber on the surface 

would still be unknown, so the accuracy of the measurement is bound to happen. The degree 

of the inaccuracy depends on the portion of the eccentricity and on the fixing position. The 

extreme positions of the eccentricity can be seen in Figure 5. 

 

 
Figure 5. a: concentric hollow fiber, b-c: eccentric hollow fiber in extreme positions. 

 

On Figure 5(a) is the ideal, when the moment of inertia of the fibers can be counted precisely. 

Figure 5(b) does not affect much the moment of inertia on the bending axis, while it causes a 

little twisting moment during the fiber deflection, but it does not bring about significant error. 

Figure 5(c) is the most critical, that can cause a 75% overestimation the moment of inertia in 

an extreme instance (12 µm outer diameter, 8 µm internal diameter and 3.5 µm eccentricity in 

vertical direction). 



Fiber deflection determinations have been executed in order to compare the flexibility 

properties of the fibers as it is written in Materials and test methods. The fiber deflection 

analysis has been performed on 50 solid fibers and on 75 hollow fibers (Table 4). 

 

 Deflection (mm) Efb (GPa) 

Solid fibers 25.48±3.21 60.35±12.05 

Hollow fibers 16.95±6.21 88.10±38.08 

Table 4. Fiber deflections and bending elasticity modulus 

 

As the tensile strength was affected by FCF, the fiber deflection was also affected by it in a 

positive direction. In Table 4 it is seen that the hollow fibers have 33% smaller deflection, and 

45% higher fiber flexural modulus, which was calculated by Equation 2. The ratio of the 

moment of inertia and the mass is bigger at hollow fibers caused by the geometry. Calculating 

the moment of inertia the diameters are on the fourth power, while calculating the cross 

sectional area they are on the second power. This ratio is the biggest at 0.5 FCF, in other 

words when the mass is the half of the solid fiber, the moment of inertia is 75% of the solid 

fiber in case of concentric hollow fiber. 

 

Filling the hollow fibers with liquids 

Hollow fibers were filled with liquids, and the affecting factors were examined. The resin 

components were pigmented for better visibility (good tracking) with Eporezit SZPM black 

dye, and the curing agents were coloured with an iron oxide based powder pigment. 

The contact angle between glass and the resins, the dynamic viscosity of the resins, the fiber 

filling speed by capillary action were analysed, and the correlation between them were 

explored. Three type of epoxy resin component and the belonging curing agents were used for 

the measurements. 

The dynamic viscosity was measured with and without pigmenting of the resin components 

and curing agents as it is written in Materials and test methods. The viscosity of the liquids 

was increased by the dyes, so the filling process could be examined with liquids of different 

viscosities.  

The contact angle between glass and liquids was measured as it is written in Materials and test 

methods. The results and their scatter are shown in Figure 6. 
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Figure 6. Contact angle between glass plate and liquids 

 

All the liquids were pigmented, and Ipox MS 90A resin component and Ipox MS 90B curing 

agent was examined also in an uncoloured condition. Since there was no significant difference 

between the coloured and the uncoloured liquids, the contact angle measurement of the other 

uncoloured liquid types was skipped. The differences between the contact angle between glass 

and the individual liquids are seen in Figure 6. So the contact angle seems to be one of the key 

factors of the capillary action, so that should be important in the follow-up studies. 

The fillings of the hollow fibers are performed as is written in Materials and test methods. 

Every resin component and curing agent was examined by the filling of five fibers. The fibers 

sucked the resin droplet, which was placed to the end of the fibers. Average speed was 

calculated by the necessary time to cover a section (Figure 7). 
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Figure 7. The average speed of the curing agents in the function of the sections 

 

In Figure 7 it is seen, that deceleration was observed at the filling of the hollow fibers with 

both the resin component and the curing agent, and the decelerating mode is similar. In some 

cases the liquids stopped due to the liquid friction before it reached the end of the fiber. In 

summary it can be reported, that the colouring slowed down the speed of the liquids in the 

hollow fibers, consequently the higher viscosity means lower filling speed, as it is seen in 

Figure 9. 

The speed of the individual liquids also depends on the contact angle between them and glass. 

On the dependence of contact angles (Figure 6) the speed of sucking shows a tendency of 

slowing down (Figure 8). 
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Figure 8. The speed of the coloured liquids in the function of the contact angle at each section 

 

In Figure 8 it can be seen, that the lower is the contact angle between the materials the better 

is the wetting of the surface, so the capillary effect fills the fiber faster. There was also a 

slowing tendency in the sucking speed as a function of the viscosity (Figure 9). 
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Figure 9. The speed of the coloured liquids as a function of the viscosity 

 

The shearing rate in the fibers during filling was calculated by Equation 3, and the viscosity 

related to shear rate was read from results of the viscosity vs. shear rate function of the 

rheological measurements. Regarding Figure 9 it is seen, that the filling speed depends a lot 

on the viscosity of the liquid. In Figure 8 and in Figure 9 the speed of the same liquids is 

shown, the difference is ordering by the contact angle or by the viscosity. Viscosity shows a 

stronger effect on the sucking speed, which is also written in the capillary height equation 

[30]. 

 

Summary 
Hollow and solid fibers have been compared as reinforcements. The tensile strength of the 

fibers was determined, and it was shown that the tensile strength changes inversely with FCF. 

The tensile strength of the hollow fibers is 85% higher, and the Young modulus is 64% higher 

than that of the solid fibers. The bending modulus of the fibers have been defined, and the 

bending modulus of the hollow fibers seemed to be 45% higher than that of the solid fibers, 

owing to the higher ratio of lower mass and moment of inertia related to the cross sectional 



area. The filling ability of the hollow fibers was examined by liquids, and it was shown that 

there is a relation between contact angle, viscosity and the filling speed made by the capillary 

action. 

Further work to be devoted to the preparation of composite plates reinforced with hollow 

fibers, and to the examination of the mechanical properties of the composite plates. The filling 

of the hollow fibers in composites with different liquids is planned, filling them both with 

healing agent and with indicator liquids, which shows if the structure is damaged. 

 

Acknowledgements 

This work is connected to the scientific program of the "Development of quality-oriented and 

harmonized R+D+I strategy and functional model at BME" project. This project is supported 

by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). 

The work reported in this paper has been developed in the framework of the project "Talent 

care and cultivation in the scientific workshops of BME" project. This project is supported by 

the grant TÁMOP - 4.2.2.B-10/1--2010-0009. 

One of the authors, Sándor Kling, would like to give thanks to Professor Ian Bond (University 

of Bristol, United Kingdom) for giving useful hints and experiences in the project. 

 

References 
1. Chawla KK. Composite materials: science and engineering. Birmingham: Springer 
Science, 1998. 
2. Deák T and Czigány T. Chemical composition and mechanical properties of basalt and 
glass fibers: A comparison. Text Res J. 2009; 79: 645-51. 
3. Jung I, Kim SY and Oh TH. Effects of Spinning Conditions on Shape Changes of 
Trilobal-shaped Fibers. Text Res J. 2010; 80: 12-8. 
4. Hinüber C, Häussler L, Vogel R, Brünig H, Heinrich G and Werner C. Hollow fibers 
made from a poly(3-hydroxybutyrate)/poly-ε-caprolactone blend. Express Polym Lett. 2011; 
5: 643-52. 
5. Dhanalakshmi M and Jog JP. Preparation and characterization of electrospun fibers of 
Nylon 11. Express Polym Lett. 2008; 2: 540-5. 
6. Shibulal GS and Naskar K. Exploring a novel multifunctional agent to improve the 
dispersion of short aramid fiber in polymer matrix. Express Polym Lett. 2012; 6: 329-44. 
7. Kim TJ and Park CK. Flexural and tensile strength developments of various shape 
carbon fiber-reinforced lightweight cementitious composites. Cement Concrete Res. 1998; 28: 
955-60. 
8. Park SJ, Seo MK and Shim HB. Effect of fiber shapes on physical characteristics of 
non-circular carbon fibers-reinforced composites. Mat Sci Eng A-Struct. 2003; 352: 34-9. 
9. Beyerlein IJ, Zhu YT and Mahesh S. On the influence of fiber shape in bone-shaped 
short-fiber composites. Compos Sci Technol. 2001; 61: 1341-57. 
10. Bond I, Hucker M, Weaver P, Bleay S and Haq S. Mechanical behaviour of circular 
and triangular glass fibres and their composites. Compos Sci Technol. 2002; 62: 1051-61. 



11. Rosen W, Ketler E and Hashin Z. Hollow glass fibre reinforced plastics. Philadelphia: 
General Electric Missile & Space Division, 1962, p.157. 
12. Dry C. Matrix cracking repair and filling using active and passive modes for smart 
timed release of chemicals from fibers into cement matrices. Smart Mater Struct. 1994; 3: 
118-23. 
13. Noland R and O'Brien T. Hollow carbon fibers. Patent US5338605, USA, 1994. 
14. Jensen T. Hollow glass fiber bushing, method of making hollow fibers and the hollow 
glass fibers made by that method. Patent US4758259, USA, 1988. 
15. Ferguson J. Carbon fibers. Patent US6242093, USA, 2001. 
16. Hucker MJ, Bond IP, Haq S, Bleay S and Foreman A. Influence of manufacturing 
parameters on the tensile strengths of hollow and solid glass fibres. J Mater Sci. 2002; 37: 
309-15. 
17. Yang X, Wang R and Fane AG. Novel designs for improving the performance of 
hollow fiber membrane distillation modules. J Membrane Sci. 2011; 384: 52-62. 
18. Koonaphapdeelert S, Wu Z and Li K. Carbon dioxide stripping in ceramic hollow 
fibre membrane contactors. Chem Eng Sci. 2009; 64: 1-8. 
19. Pang J and Bond I. `Bleeding composites'--damage detection and self-repair using a 
biomimetic approach. Compos Part A-Appl S. 2005; 36: 183-8. 
20. Pang J and Bond I. A hollow fibre reinforced polymer composite encompassing self-
healing and enhanced damage visibility. Compos Sci and Technol. 2005; 65: 1791-9. 
21. Trask R, Williams G and Bond I. Bioinspired self-healing of advanced compositte 
structures using glass hollow fibres. Journal of the Royal Society Interface. 2007; 4: 363-71. 
22. Trask RS and Bond IP. Biomimetic self-healing of advanced composite structures 
using hollow glass fibres. Smart Mater Struct. 2006; 15: 704. 
23. Zhang M and Rong M. Self-healing polymers and polymer composites. Hoboken: John 
Wiley & Sons, Inc., 2011. 
24. EN ISO 5079. Determination of braking force and elongation at break of individual 
fibres. 
25. Potluri P, Atkinson J and Porat I. Large deformation modelling of flexible materials. J 
Text Inst. 1996; 87: 129-51. 
26. Holden J. On the finite deflections of thin beams. Int J Solids Struct. 1972; 8: 1051-5. 
27. Darby R. Chemical engineering fluid mechanics. New York: CRD Press, 2001. 
28. Weibull W. A statistical distribution of wide applicability. Journal of Applied 
Mechanics. 1951; 18: 293-7. 
29. Gupta P. Glass fibers for composite materials. In: Bunsell AR, (ed.). Fibre 
reinforcements for composite materials. New York: Elsevier, 1988, p. 19-71. 
30. Kundu PK and Cohen IM. Fluid Mechanics. 4 ed. San Diego: Elsevier Science and 
Technology Books, 2008. 
 

 


	Abstract
	Keywords
	Introduction
	Materials and test methods
	Fibers
	Filling of the hollow fibers with resin

	Results and discussion
	Fiber tensile test
	Fiber flexibility analysis
	Filling the hollow fibers with liquids

	Summary
	Acknowledgements
	References

