109 research outputs found

    Effect of diacutaneous fibrolysis on the muscular properties of gastrocnemius muscle

    Get PDF
    Diacutaneous fibrolysis is a noninvasive technique that has been shown to be effective in the treatment of musculoskeletal disorders such as shoulder pain, lateral epicondylalgia, patellofemoral pain syndrome and carpal tunnel syndrome. However, while diacutaneous fibrolysis is applied to soft tissue, its effects on muscular properties are unknown. The purpose of the present study was to evaluate the effects of diacutaneous fibrolysis on muscle properties as measured by tensiomyography and myotonometry in asymptomatic subjects. An analytical descriptive study was performed. A single session of diacutaneous fibrolysis on the gastrocnemius muscle was applied to one limb (treated limb group) and the other limb was the control (control limb group). Subjects were assessed with tensiomyography and myotonometry before treatment (T0), after treatment (T1) and 30 minutes later (T2). The primary outcomes were tensiomyography and myotonometry variables. The treated limb group showed a statistically significant increase (p<0.05) in tensiomyography parameters. A decrease in rigidity and increase in relaxation was also observed on myotonometry at T1, with some of the effects being maintained at T2. Rigidity and relaxation at T1 were statistically significant between groups (p<0.05). A single session of diacutaneous fibrolysis to the gastrocnemius muscle of asymptomatic subjects produced immediate changes in muscle properties. These changes were maintained 30 minutes after the application of the technique

    The importance of tropical tree-ring chronologies for global change research

    Get PDF

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    In a special run of the LHC with β⋆=2.5 km, proton–proton elastic-scattering events were recorded at s√=13 TeV with an integrated luminosity of 340 μb−1 using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam t variable in the range from −t=2.5⋅10−4 GeV2 to −t=0.46 GeV2 using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section σtot, parameters of the nuclear slope, and the ρ-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit t→0. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the t-dependence. The results for σtot and ρ are σtot(pp→X)=104.7±1.1 mb ,ρ=0.098±0.011. The uncertainty in σtot is dominated by the luminosity measurement, and in ρ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.publishedVersio

    Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of τ-leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for flavour-changing neutral current (FCNC) tqH interactions involving a top quark, another up-type quark (q = u, c), and a Standard Model (SM) Higgs boson decaying into a τ-lepton pair (H → τ+τ−) is presented. The search is based on a dataset of pp collisions at s√ = 13 TeV that corresponds to an integrated luminosity of 139 fb−1 recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson (pp → tH), and top quark pair production in which one of top quarks decays into Wb and the other decays into qH through the FCNC interactions. The search selects events with two hadronically decaying τ-lepton candidates (τhad) or at least one τhad with an additional lepton (e, μ), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3σ above the expected SM background, and 95% CL upper limits on the t → qH branching ratios are derived. The observed (expected) 95% CL upper limits set on the t → cH and t → uH branching ratios are 9.4×10−4(4.8+2.2−1.4×10−4) and 6.9×10−4(3.5+1.5−1.0×10−4), respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective tqH couplings are Ccϕ < 1.35 (0.97) and Cuϕ < 1.16 (0.82)

    Measurements of Zγ+jets differential cross sections in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Differential cross-section measurements of Zγ production in association with hadronic jets are presented, using the full 139 fb−1 dataset of s√ = 13 TeV proton–proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the Z boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLOPS, as well as next-to-leading-order predictions from MADGRAPH5_AMC@NLO and SHERPA

    Measurement of the properties of Higgs boson production at s√ = 13 TeV in the H → γγ channel using 139 fb−1 of pp collision data with the ATLAS experiment

    Get PDF
    Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb−1 of pp collision data at s√ = 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be 1.04+0.10−0.09 . Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a W or Z boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a p-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results

    Measurements of multijet event isotropies using optimal transport with the ATLAS detector

    Get PDF
    A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb−1 of proton-proton collisions with s√ = 13 TeV centre-of-mass energy recorded with the ATLAS detector at CERN’s Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the ‘Energy-Mover’s Distance’. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets’ transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale

    Measurement of Zγγ production in pp collisions at s√=13 TeV with the ATLAS detector

    Get PDF
    Cross-sections for the production of a Z boson in association with two photons are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb−1 recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the Z boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated Z(→ℓℓ)γγ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the Zγγ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory
    corecore