129 research outputs found

    A genome search for primary vesicoureteral reflux shows further evidence for genetic heterogeneity

    Get PDF
    Vesicoureteral reflux (VUR) is the most common disease of the urinary tract in children. In order to identify gene(s) involved in this complex disorder, we performed a genome-wide search in a selected sample of 31 patients with primary VUR from eight families originating from southern Italy. Sixteen additional families with 41 patients were included in a second stage. Nonparametric, affected-only linkage analysis identified four genomic areas on chromosomes 1, 3, and 4 (p < 0.05); the best result corresponded to the D3S3681-D3S1569 interval on chromosome 3 (nonparametric linkage score, NPL = 2.75, p = 0.008). This region was then saturated with 26 additional markers, tested in the complete group of 72 patients from 24 families (NPL = 2.01, p = 0.01). We identified a genomic area on 3q22.2-23, where 26 patients from six multiplex families shared overlapping haplotypes. However, we did not find evidence for a common ancestral haplotype. The region on chromosome 1 was delimited to 1p36.2-34.3 (D1S228-D1S255, max. NPL = 1.70, p = 0.03), after additional fine typing. Furthermore, on chromosome 22q11.22-12.3, patients from a single family showed excess allele sharing (NPL = 3.35, p = 0.015). Only the chromosome 3q region has been previously reported in the single genome-wide screening available for primary VUR. Our results suggest the presence of several novel loci for primary VUR, giving further evidence for the genetic heterogeneity of this disorder

    HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: A systematic review and meta-analysis

    Get PDF
    Background: HER2-positive (HER2+) breast cancer (BC) comprises all the four PAM50 molecular subtypes. Among these, the HER2-Enriched (HER2-E) appear to be associated with higher pathological complete response (pCR) rates following anti-HER2-based regimens. Here, we present a meta-analysis to validate the association of the HER2-E subtype with pCR following anti-HER2-based neoadjuvant treatments with or without chemotherapy (CT). Methods: A systematic literature search was performed in February 2019. The primary objective was to compare the association between HER2-E subtype (versus others) and pCR. Selected secondary objectives were to compare the association between 1) HER2-E subtype and pCR in CT-free studies, 2) HER2-E subtype within hormone receptor (HR)-negative and HR+ disease and 3) HR-negative disease (versus HR+) and pCR in all patients and within HER2-E subtype. A random-effect model was applied. The Higgins’ I2 was used to quantify heterogeneity. Results: Sixteen studies were included, 5 of which tested CT-free regimens. HER2-E subtype was significantly associated with pCR in all patients (odds ratio [OR] = 3.50, p < 0.001, I2 = 33%), in HR+ (OR = 3.61, p < 0.001, I2 = 1%) and HR-negative tumors (OR = 2.28, p = 0.01, I2 = 47%). In CT-free studies, HER2-E subtype was associated with pCR in all patients (OR = 5.52, p < 0.001, I2 = 0%) and in HR + disease (OR = 4.08, p = 0.001, I2 = 0%). HR-negative status was significantly associated with pCR compared to HR + status in all patients (OR = 2.41, p < 0.001, I2 = 30%) and within the HER2-E subtype (OR = 1.76, p < 0.001, I2 = 0%). Conclusions: The HER2-E biomarker identifies patients with a higher likelihood of achieving a pCR following neoadjuvant anti-HER2-based therapy beyond HR status and CT use. Future trial designs to escalate or de-escalate systemic therapy in HER2+ disease should consider this genomic biomarker

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Pharmacokinetic optimisation of treatment schedules for anthracyclines and paclitaxel in patients with cancer

    No full text
    The integration of paclitaxel into chemotherapy regimens with anthracyclines offers a new opportunity for devising effective therapy for patients with breast cancer. High response rates have been obtained by combining epirubicin or doxorubicin with paclitaxel. The pharmacokinetic analysis of paclitaxel and anthracyclines, as well as the identification of relationships with their pharmacodynamics, represents a rational approach for treatment optimisation. A schedule-dependent interaction between paclitaxel and anthracyclines has been demonstrated in clinical pharmacokinetic studies. In patients given paclitaxel 125 to 200 mg/m2 as 3- to 24-hour infusions in combination with doxorubicin 48 to 60 mg/m2 as a 48-hour infusion or intravenous bolus, the peak plasma drug concentration (Cmax) of doxorubicin increased significantly and drug clearance was reduced in the sequence paclitaxel-->doxorubicin as compared with doxorubicin-->paclitaxel. The schedule paclitaxel-->doxorubicin was more toxic as compared with doxorubicin-->paclitaxel, and an incidence of 18 to 20% of congestive heart failure was observed in patients with breast cancer given doxorubicin 60 mg/m2 followed by paclitaxel 125 to 200 mg/m2. Likewise, patients given epirubicin 90 mg/m2 had a sudden rebound of epirubicinol plasma concentrations shortly after the start of infusion of paclitaxel 200 mg/m2, with a significant increase in the area under the concentration-time curve (AUC) of epirubicinol as compared with epirubicin alone (1.27 +/- 0.2 vs 0.61 +/- 0.1 mumol/L.h). Moreover, the severity of the myelosuppression induced by paclitaxel, as defined by a sigmoid maximum effect (Emax) relationship between the decrease in neutrophil count and the duration of drug plasma concentrations above the threshold value of 0.1 mumol/L, was significantly enhanced by epirubicin. Finally, chemotherapy with paclitaxel and anthracyclines may be improved by designing pharmacologically guided regimens in order to control the extent of pharmacokinetic interaction and reduce the risk of severe toxicity while maintaining the therapeutic efficacy of the combination. Future protocols should explore the activity of a prolonged paclitaxel infusion in association with an anthracycline separated from the taxane by a washout time interval in order to minimise the inhibitory effects exerted by paclitaxel on P-glycoprotein-mediated biliary clearance of anthracyclines, the most likely cause of pharmacokinetic interaction
    corecore