331 research outputs found

    Theory of Threading Edge and Screw Dislocations in GaN

    Get PDF
    The atomic structures, electrical properties, and line energies for threading screw and threading edge dislocations of wurtzite GaN are calculated within the local-density approximation. Both dislocations are electrically inactive with a band gap free from deep levels. These results are understood to arise from relaxed core structures which are similar to (1010) surfaces

    Hardiness and Outcome of Self-catheterisation Training (HOST): protocol for an observational study exploring the effects of personality traits in women on ability to learn clean intermittent self-catheterisation.

    Get PDF
    INTRODUCTION: Clean intermittent self-catheterisation (CISC) is the recommended first-line management of voiding dysfunction; however, psychological factors involved in acceptance and take up are often neglected. There is a tendency to discuss the success of CISC in relation to factors that affect teaching and learning, with subsequent success or failure being attributed to these. There is limited research investigating what extent, personality traits impact on a woman's willingness to learn CISC and subsequent mastery of the technique. METHOD AND ANALYSIS: All women attending a tertiary urogynaecology department as eligible for CISC will be invited to participate in the study. Over the 14-month recruitment period, an estimated 130 women will be involved. The participants will complete a series of self-reported questionnaires. Personality types will be assessed using The Hardiness Scale and State-Trait Anxiety Inventory. The impact of urinary symptoms and CISC on quality of life (QoL) will be measured using an electronic pelvic-floor assessment questionnaire (ePAQ). Success and mastery will be measured by recording the number of hospital appointments and the length of time taken to learn. Confidence will be measured using the Likert scale. A sample of 20 women will be invited to participate in semi-structured in-depth interviews to explore women's views and experiences of CISC. ETHICS AND DISSEMINATION: Regulatory approvals will be in place prior to the start of the study. Good clinical practice guidelines will be followed throughout. Eligibility and training for CISC will be undertaken in accordance to individualised care plans in line with unit protocol and will not be influenced by the study. Trial data will be anonymised and participant confidentiality will be maintained. The Study findings will be disseminated through publications in relevant journals and will be presented at multiprofessional conferences and scientific meetings

    Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types

    Get PDF
    This is the final version. Available on open access from EGU via the DOI in this recordDynamic global vegetation models (DGVMs) are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth System Model. Recently the number of plant functional types (PFTs) in JULES was expanded from five to nine to better represent functional diversity in global ecosystems. Here we introduce a more mechanistic representation of vegetation dynamics in TRIFFID, the dynamic vegetation component of JULES, which allows for any number of PFTs to compete based solely on their height; therefore, the previous hardwired dominance hierarchy is removed. With the new set of nine PFTs, JULES is able to more accurately reproduce global vegetation distribution compared to the former five PFT version. Improvements include the coverage of trees within tropical and boreal forests and a reduction in shrubs, the latter of which dominated at high latitudes. We show that JULES is able to realistically represent several aspects of the global carbon (C) cycle. The simulated gross primary productivity (GPP) is within the range of observations, but simulated net primary productivity (NPP) is slightly too high. GPP in JULES from 1982 to 2011 is 133PgCyrg'1, compared to observation-based estimates (over the same time period) between 1238 and 150-175PgCyrg'1. NPP from 2000 to 2013 is 72PgCyrg'1, compared to satellite-derived NPP of 55PgCyrg'1 over the same period and independent estimates of 56.214.3PgCyrg'1. The simulated carbon stored in vegetation is 542PgC, compared to an observation-based range of 400-600PgC. Soil carbon is much lower (1422PgC) than estimates from measurements ( > 2400PgC), with large underestimations of soil carbon in the tropical and boreal forests. We also examined some aspects of the historical terrestrial carbon sink as simulated by JULES. Between the 1900s and 2000s, increased atmospheric carbon dioxide levels enhanced vegetation productivity and litter inputs into the soils, while land use change removed vegetation and reduced soil carbon. The result is a simulated increase in soil carbon of 57PgC but a decrease in vegetation carbon of 98PgC. The total simulated loss of soil and vegetation carbon due to land use change is 138PgC from 1900 to 2009, compared to a recent observationally constrained estimate of 15550PgC from 1901 to 2012. The simulated land carbon sink is 2.01.0PgCyrg'1 from 2000 to 2009, in close agreement with estimates from the IPCC and Global Carbon Project.The authors acknowledge support from the Natural Environment Research Council (NERC) Joint Weather and Climate Research Programme through grant numbers NE/K016016/1 (Anna B. Harper) and NEC05816 (Lina M. Mercado). NERC support was also provided to Lina M. Mercado through the UK Earth System Modelling project (UKESM, grant NE/N017951/1). Anna B. Harper also acknowledges support from her EPSRC Fellowship (EP/N030141/1) and the EU H2020 project CRESCENDO (GA641816). The EU project FP7 LUC4C (GA603542) provided support for Stephen Sitch and Pierre Friedlingstein. The Met Office authors were supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101)

    The global carbon budget 1959-2011

    Get PDF
    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future

    Climate-Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products

    Get PDF
    Variability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the consistency in GPP from global products which extend for more than three decades; two observation‐based approaches, the upscaling of FLUXNET site observations (FLUXCOM) and a remote sensing derived light use efficiency model (RS‐LUE), and from a suite of terrestrial biosphere models (TRENDYv6). At local scales, we find high correlations in annual GPP among the products, with exceptions in tropical and high northern latitudes. On longer time scales, the products agree on the direction of trends over 58% of the land, with large increases across northern latitudes driven by warming trends. Further, tropical regions exhibit the largest interannual variability in GPP, with both rainforests and savannas contributing substantially. Variability in savanna GPP is likely predominantly driven by water availability, although temperature could play a role via soil moisture‐atmosphere feedbacks. There is, however, no consensus on the magnitude and driver of variability of tropical forests, which suggest uncertainties in process representations and underlying observations remain. These results emphasize the need for more direct long‐term observations of GPP along with an extension of in situ networks in underrepresented regions (e.g., tropical forests). Such capabilities would support efforts to better validate relevant processes in models, to more accurately estimate GPP

    Shifts in national land use and food production in Great Britain after a climate tipping point

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: The modelled output data that support the findings of this study are openly available from: Smith, G. S. & Ritchie, P. D. L. (NERC Environmental Information Data Centre: 639 doi.org/10.5285/e1c1dbcf-2f37-429b-af19-a730f98600f6, 2019).Climate change is expected to impact agricultural land use. Steadily accumulating changes in temperature and water availability can alter the relative profitability of different farming activities and promote land use changes. There is also potential for high-impact ‘climate tipping points’ where abrupt, non-linear change in climate occurs - such as the potential collapse of the Atlantic Meridional Overturning Circulation (AMOC). Here, using data from Great Britain, we develop a methodology to analyse the impacts of a climate tipping point on land use and economic outcomes for agriculture. We show that economic/land use impacts of such a tipping point are likely to include widespread cessation of arable farming with losses of agricultural output, an order of magnitude larger than the impacts of climate change without an AMOC collapse. The agricultural effects of AMOC collapse could be ameliorated by technological adaptations such as widespread irrigation, but the amount of water required and the costs appear prohibitive in this instance.Natural Environment Research Council (NERC)Alan Turing Institut

    Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    Get PDF
    This is the final version of the article. Available from IOP Publishing via the DOI in this record.We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and South Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr−1, whereas EDGARv4.3 suggested a net carbon sink of −0.17 Pg C yr−1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.This work was supported by the Asia Pacific Network for Global Change Research (ARCP2013-01CMY-Patra/Canadell). LC was supported by the National Science Foundation East Asia Pacific Summer Institute (EAPSI) Fellowship. KI and PP were supported by the Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan. JGC thanks the support from the Australian Climate Change Science Program. AI and EK were supported by ERTDF (S-10) by the Ministry of the Environment, Japan. CK is supported by DOE-BER through BGC-Feedbacks SFA and NGEE-Tropics. AW was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and EU FP7 Funding through project LUC4C (603542)

    Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity

    Get PDF
    In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, contributed to fast soil moisture depletion, amplifying the summer drought. We find regional asymmetries in summer ecosystem carbon fluxes: increased (reduced) sink in the northern (southern) areas affected by drought. These asymmetries can be explained by distinct legacy effects of spring growth and of water-use efficiency dynamics mediated by vegetation composition, rather than by distinct ecosystem responses to summer heat/drought. The asymmetries in carbon and water exchanges during spring and summer 2018 suggest that future land-management strategies could influence patterns of summer heat waves and droughts under long-term warming

    Regional carbon fluxes from land use and land cover change in Asia, 1980-2009

    Get PDF
    Wepresent a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia usingmultiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food andAgriculture Organization-Forest Resource Assessment (FAO-FRA2015; country-level inventory estimates), the Emission Database forGlobalAtmospheric Research (EDGARv4.3), the ‘Houghton’ bookkeepingmodel that incorporates FAO-FRA data, an ensemble of 8 state-of-the-artDynamic Global Vegetation Models (DGVM), and2 recently published independent studies using primarily remote sensing techniques.The estimates are aggregated spatially to Southeast, East, and SouthAsia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCCin Asia were responsible for 20%–40%of global LULCCemissions, with emissions from Southeast Asia alone accounting for15%–25%of global LULCCemissions during the same period. In the 2000s and for allAsia, three estimates (FAO-FRA,DGVM,Houghton) were in agreement of a net source of carbon to the atmosphere,with meanestimates rangingbetween0.24 to0.41PgCyr−1^{-1},whereasEDGARv4.3 suggested a net carbon sink of−0.17 Pg C yr−1^{-1}. Three of 4 estimates suggest that LULCCcarbon emissions declined by at least 34%in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to includeemissions fromcarbon rich peatlands and land management, such as shifting cultivation andwood harvesting, which appear to be consistently underreported
    • 

    corecore