139 research outputs found

    The anatomy of the simplest Duflo-Zuker mass formula

    Full text link
    The simplest version of the Duflo-Zuker mass model (due entirely to the late Jean Duflo) is described by following step by step the published computer code. The model contains six macroscopic monopole terms leading asymptotically to a Liquid Drop form, three microscopic terms supposed to mock configuration mixing (multipole) corrections to the monopole shell effects, and one term in charge of detecting deformed nuclei and calculating their masses. A careful analysis of the model suggests a program of future developments that includes a complementary approach to masses based on an independently determined monopole Hamiltonian, a better description of deformations and specific suggestions for the treatment of three body forces.Comment: 30 pages, 21 figures, extensives changes to improve presentation and clarity, with an ample discussion of the anomalous term. Accepted for publication in Nuclear Physics

    Organic aerosol and global climate modelling: a review

    Get PDF
    The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies

    Balancing selection on size: effects on the incidence of an alternative reproductive tactic

    Get PDF
    ABSTRACT Question: Does fluctuating natural selection on body size of fish among years (balancing selection) influence the frequency of an alternative male reproductive tactic? Hypothesis: When the surviving juveniles of a cohort are larger because of selection, a higher proportion of the population will develop as mature 'sneaker' males than expected in the absence of selection. In the case where selection favours smaller individuals, a lower proportion will develop as mature 'sneaker' males. Organisms: Juvenile Atlantic salmon (Salmo salar) from a naturally sustained population in the Ste-Marguerite River, Centre Interuniversitaire de Recherche sur le Saumon Atlantique, Province of Québec, Canada. Methods: The presence of balancing size-selection was examined by measuring the proportional shift of the mean size and variance of juvenile salmon sampled in the autumn and following spring at multiple sites for each of three annual cohorts. The proportional shift in mean size of individuals over winter was then correlated with the incidence of early male maturity (sneakers) observed at the same sites for each cohort the following fall. Conclusions: Winter mortality decreased the size of surviving fish in one cohort by 7.8% on average, increased size by 2.7% on average in another and had little effect on the third. Proportionally more juvenile males adopted the sneaker tactic when juveniles surviving winter were larger, whereas fewer juvenile males adopted the sneaker tactic when surviving juveniles were smaller. The fluctuating nature of selection on body size indirectly maintains life-cycle divergence through a direct effect on size frequencies within a cohort

    Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish

    Get PDF
    Background: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment.Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) [EXCL/BIA-ANM/0549/2012, Pest-OE/MAR/UI0331/2011]; Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology; Institute for Cellular and Molecular Biology Fellowship; FCTinfo:eu-repo/semantics/publishedVersio

    Structure of visible and dark matter components in spiral galaxies at redshifts z = 0.5-0.9

    Full text link
    We have constructed self-consistent light and mass distribution models for four disk galaxies at redshifts z = 0.48, 0.58, 0.81 and 0.88, using the HST archive WFPC2 observations and rotation curves measured by Vogt et al. (1996) and Rigopoulou et al. (2002). The models consist of three components: a bulge, a disk and a dark matter halo. Similarly to the sample studied in Paper I (Tamm & Tenjes, 2003), light distribution of the galaxies in the outer parts is clearly steeper than a simple exponential disk. After applying k-corrections, calculated mass-to-light ratios for galactic disks within the maximum disk assumption are M/L_B = 0.9, 7.4, 4.3 and 1.4, respectively. Together with the galaxies from Paper I, the mean = 2.5 at ~0.9, indicating no significant evolution of M/L_B with redshift. Central densities of dark matter halos for an isothermal model are 0.008, 0.035, 0.013, and 0.022 in units M_sun/pc^3, respectively. Together with the galaxies from Paper I, the DM central density of the four galaxies at mean readshift ~0.9 is rho(0) = (0.012-0.028) M_sun/pc^3, also showing no significant evolution with redshift.Comment: 11 pages, 10 figures, Astron. Astrophys. accepte

    Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates.

    Get PDF
    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available

    Aristotelian Essentialism: Essence in the Age of Evolution

    Get PDF
    The advent of contemporary evolutionary theory ushered in the eventual decline of Aristotelian Essentialism (Æ) – for it is widely assumed that essence does not, and cannot have any proper place in the age of evolution. This paper argues that this assumption is a mistake: if Æ can be suitably evolved, it need not face extinction. In it, I claim that if that theory’s fundamental ontology consists of dispositional properties, and if its characteristic metaphysical machinery is interpreted within the framework of contemporary evolutionary developmental biology, an evolved essentialism is available. The reformulated theory of Æ offered in this paper not only fails to fall prey to the typical collection of criticisms, but is also independently both theoretically and empirically plausible. The paper contends that, properly understood, essence belongs in the age of evolution

    FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    Get PDF
    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes
    corecore