274 research outputs found

    Age and sex affect intersubject correlation of EEG throught development

    Full text link
    Recent efforts have aimed to characterize clinical pediatric populations by using neurophysiological tests in addition to behavioral assays. Here we report on a data collection effort in which electroencephalography (EEG) was recorded in both juveniles and adults (N=114 participants, ages 6-44 years of age) during various stimulation protocols. The present analysis focuses on how neural responses during passive viewing of naturalistic videos vary with age and sex, and in particular, how similar they are within developmental groups. Similarity of neural responses was measured as the inter-subject correlation of the EEG. Stimulus-evoked neural responses are more similar among children and decrease in similarity with age. Among children, males respond more similarly to each other than females. This was uniformly true for a variety of videos. The decrease in group similarity with age may result from an overall decline in the magnitude of evoked responses, but this cannot explain the sex differences found in the young. We therefore propose that as children mature, neural function may become more variable

    Alternative Aviation Fuel Experiment (AAFEX)

    Get PDF
    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plume

    The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex

    Get PDF
    Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample (n=114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort (n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli.Fil: Petroni, Agustín. City University of New York; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cohen, Samantha S.. City University of New York; Estados UnidosFil: Ai, Lei. City University of New York; Estados UnidosFil: Langer, Nicolas. City University of New York; Estados UnidosFil: Henin, Simon. City University of New York; Estados UnidosFil: Vanderwal, Tamara. City University of New York; Estados UnidosFil: Milham, Michael P.. City University of New York; Estados UnidosFil: Parra, Lucas C.. City University of New York; Estados Unido

    Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    Get PDF
    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation

    The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex

    Full text link
    Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample ( = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort ( = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli

    Mapping patterns of thought onto brain activity during movie-watching

    Get PDF
    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better-on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films
    corecore