568 research outputs found
Recommended from our members
Journalism and the Invasion of Grenada 30 Years On: A Retrospective
The 1983 United States-led invasion of Grenada represents an important case study of journalism in the front line because it marked a changing point in the relationship between journalists and the US administration. The exclusion of news organisations and independent journalists at the time can be conceived of as a test in trying new forms of information management. The tensions experienced between journalists, government and military officers signalled the need to design alternative solutions to the problem of information coverage in wartime
Factors Governing Pasting Properties of Waxy Wheat Flours
Citation: Purna, S. K. G., Shi, Y. C., Guan, L., Wilson, J. D., & Graybosch, R. A. (2015). Factors Governing Pasting Properties of Waxy Wheat Flours. Cereal Chemistry, 92(5), 529-535. doi:10.1094/cchem-10-14-0209-rWaxy wheat (Triticum aestivum L.) contains endosperm starch lacking in amylose. To realize the full potential of waxy wheat, the pasting properties of hard waxy wheat flours as well as factors governing the pasting properties were investigated and compared with normal and partial waxy wheat flours. Starches isolated from six hard waxy wheat flours had similar pasting properties, yet their corresponding flours had very different pasting properties. The differences in pasting properties were narrowed after endogenous alpha-amylase activity in waxy wheat flours was inhibited by silver nitrate. Upon treatment with protease, the extent of protein digestibility influenced the viscosity profile in waxy wheat flours. Waxy wheat starch granules swelled extensively when heated in water and exhibited a high peak viscosity, but they fragmented at high temperatures, resulting in more rapid breakdown in viscosity. The extensively swelled and fragmented waxy wheat starch granules were more susceptible to a-amylase degradation than normal wheat starch. A combination of endogenous a-amylase activity and protein matrix contributed to a large variation in pasting properties of waxy wheat flours
Differences in the pattern and regulation of mineral deposition in human cell lines of osteogenic and non-osteogenic origin
Bone marrow-derived mesenchymal stem cells (MSCs) are widely used as a cellular model of bone formation, and can mineralize in vitro in response to osteogenic medium (OM). It is unclear, however, whether this property is specific to cells of mesenchymal origin. We analysed the OM response in 3 non-osteogenic lines, HEK293, HeLa and NTera, compared to MSCs. Whereas HEK293 cells failed to respond to OM conditions, the 2 carcinoma-derived lines NTera and HeLa deposited a calcium phosphate mineral comparable to that present in MSC cultures. However, unlike MSCs, HeLa and NTera cultures did so in the absence of dexamethasone. This discrepancy was confirmed, as bone morphogenetic protein inhibition obliterated the OM response in MSCs but not in HeLa or NTera, indicating that these 2 models can deposit mineral through a mechanism independent of established dexamethasone or bone morphogenetic protein signalling
Associations of Starch Gel Hardness, Granule Size, Waxy Allelic Expression, Thermal Pasting, Milling Quality, and Kernel Texture of 12 Soft Wheat Cultivars
Starches were isolated from 12 soft wheat (Triticum aestivum L.) cultivars and were characterized for waxy (Wx) allelic expression, thermal pasting characteristics, and starch granule size. Gels were produced from the thermally degraded starches and were evaluated using large deformation rheological measurements. Data were compared with cultivar kernel texture, milling characteristics, starch chemical analyses, and flour pasting characteristics. Larger flour yields were produced from cultivars that had larger starch granules. Flour yield also was correlated with lower amylose content and greater starch content. Harder starch gels were correlated with higher levels of amylose content and softer kernel texture. The cultivar Fillmore, which had a partial waxy mutation at the B locus, produced the highest peak pasting viscosity and the lowest gel hardness. Softer textured wheats had greater lipid‐complexed amylose and starch phosphorus contents and had less total starch content. Among these wheats of the soft market class, softer textured wheats had larger starch granules and harder textured wheats had smaller starch granules. In part, this may explain why soft wheats vary in texture. The smaller granules have larger surface area available for noncovalent bonding with the endosperm protein matrix and they also may pack more efficiently, producing harder endosperm.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141588/1/cche0163.pd
The factor H binding protein of Neisseria meningitidis interacts with xenosiderophores in vitro.
The factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis that confers to the bacterium the ability to resist killing by human serum. The determination of its three-dimensional structure revealed that the carboxyl terminus of the protein folds into an eight-stranded ߠbarrel. The structural similarity of this part of the protein to lipocalins provided the rationale for exploring the ability of fHbp to bind siderophores. We found that fHbp was able to bind in vitro siderophores belonging to the cathecolate family and mapped the interaction site by nuclear magnetic resonance. Our results indicated that the enterobactin binding site was distinct from the site involved in binding to human factor H and stimulates new hypotheses about possible multiple activities of fHbp.Full Tex
EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on Dietary Reference Values for vitamin C
The Neisseria gonorrhoeae Methionine Sulfoxide Reductase (MsrA/B) Is a Surface Exposed, Immunogenic, Vaccine Candidate
Control of the sexually transmitted infection gonorrhea is a major public health challenge, due to the recent emergence of multidrug resistant strains of Neisseria gonorrhoeae, and there is an urgent need for novel therapies or a vaccine to prevent gonococcal disease. In this study, we evaluated the methionine sulfoxide reductase (MsrA/B) of N. gonorrhoeae as a potential vaccine candidate, in terms of its expression, sequence conservation, localization, immunogenicity, and the functional activity of antibodies raised to it. Gonococcal MsrA/B has previously been shown to reduce methionine sulfoxide [Met(O)] to methionine (Met) in oxidized proteins and protect against oxidative stress. Here we have shown that the gene encoding MsrA/B is present, highly conserved, and expressed in all N. gonorrhoeae strains investigated, and we determined that MsrA/B is surface is exposed on N. gonorrhoeae. Recombinant MsrA/B is immunogenic, and mice immunized with MsrA/B and either aluminum hydroxide gel adjuvant or Freund's adjuvant generated a humoral immune response, with predominantly IgG1 antibodies. Higher titers of IgG2a, IgG2b, and IgG3 were detected in mice immunized with MsrA/B-Freund's adjuvant compared to MsrA/B-aluminum hydroxide adjuvant, while IgM titers were similar for both adjuvants. Antibodies generated by MsrA/B-Freund's in mice mediated bacterial killing via both serum bactericidal activity and opsonophagocytic activity. Anti-MsrA/B was also able to functionally block the activity of MsrA/B by inhibiting binding to its substrate, Met(O). We propose that recombinant MsrA/B is a promising vaccine antigen for N. gonorrhoeae
Origin of the Diversity in DNA Recognition Domains in Phasevarion Associated modA Genes of Pathogenic Neisseria and Haemophilus influenzae
Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles
- …
