943 research outputs found

    The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    Full text link
    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of Mstel=8.8×1010−6.0×1011MsunM_{stel} = 8.8 \times 10^{10} - 6.0 \times 10^{11} M_{sun}. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 halos with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter halos and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed M_BH - sigma relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of two compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ~10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with sigma = 200 km/s, the X-ray luminosity is reduced from 104210^{42} erg/s to 104010^{40} erg/s. It also efficiently suppresses late time star formation, reducing the specific star formation rate from 10−10.510^{-10.5} yr−1yr^{-1} to 10−1410^{-14} yr−1yr^{-1} on average and resulting in quiescent galaxies since z=2, whereas the thermal feedback model shows higher late time in-situ star formation rates than observed.Comment: 13 pages, 11 figures, accepted for the publication in MNRA

    An invariance in the kronig-kramers' relation

    Get PDF
    Invariance in Kronig-Kramers relation to establish some representations used in analysis of relaxation dispersion

    SPHGal: Smoothed Particle Hydrodynamics with improved accuracy for Galaxy simulations

    Full text link
    We present the smoothed-particle hydrodynamics implementation SPHGal, which combines some recently proposed improvements in GADGET. This includes a pressure-entropy formulation with a Wendland kernel, a higher order estimate of velocity gradients, a modified artificial viscosity switch with a modified strong limiter, and artificial conduction of thermal energy. With a series of idealized hydrodynamic tests we show that the pressure-entropy formulation is ideal for resolving fluid mixing at contact discontinuities but performs conspicuously worse at strong shocks due to the large entropy discontinuities. Including artificial conduction at shocks greatly improves the results. In simulations of Milky Way like disk galaxies a feedback-induced instability develops if too much artificial viscosity is introduced. Our modified artificial viscosity scheme prevents this instability and shows efficient shock capturing capability. We also investigate the star formation rate and the galactic outflow. The star formation rates vary slightly for different SPH schemes while the mass loading is sensitive to the SPH scheme and significantly reduced in our favored implementation. We compare the accretion behavior of the hot halo gas. The formation of cold blobs, an artifact of simple SPH implementations, can be eliminated efficiently with proper fluid mixing, either by conduction and/or by using a pressure-entropy formulation.Comment: Replaced with the version accepted by MNRA

    The STACEE-32 Ground Based Gamma-ray Detector

    Full text link
    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.Comment: 45 pages, 25 figures, Accepted for publication in Nuclear Instruments and Methods

    ELOISE I System Editoren

    Get PDF

    Shallow Dark Matter Cusps in Galaxy Clusters

    Full text link
    We study the evolution of the stellar and dark matter components in a galaxy cluster of 1015 M⊙10^{15} \, \rm{M_{\odot}} from z=3z=3 to the present epoch using the high-resolution collisionless simulations of Ruszkowski & Springel (2009). At z=3z=3 the dominant progenitor halos were populated with spherical model galaxies with and without accounting for adiabatic contraction. We apply a weighting scheme which allows us to change the relative amount of dark and stellar material assigned to each simulation particle in order to produce luminous properties which agree better with abundance matching arguments and observed bulge sizes at z=3z=3. This permits the study of the effect of initial compactness on the evolution of the mass-size relation. We find that for more compact initial stellar distributions the size of the final Brightest Cluster Galaxy grows with mass according to r∝M2r\propto M^{2}, whereas for more extended initial distributions, r∝Mr\propto M. Our results show that collisionless mergers in a cosmological context can reduce the strength of inner dark matter cusps with changes in logarithmic slope of 0.3 to 0.5 at fixed radius. Shallow cusps such as those found recently in several strong lensing clusters thus do not necessarily conflict with CDM, but may rather reflect on the initial structure of the progenitor galaxies, which was shaped at high redshift by their formation process.Comment: 8 pages, 4 figures, submitted to MNRA

    The ATLAS3D project - XXV: Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators

    Get PDF
    We present a detailed two-dimensional stellar dynamical analysis of as ample of 44 cosmological hydrodynamical simulations of individual central galaxies with stellar masses of 2 x 1010Msun ∌≀ Mstar ∌≀ 6x 1011Msun. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion, and higher-order Gauss-Hermite moments h3 and h4 are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the λR-parameter. The velocity, velocity dispersion, h3, and h4 fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS3D survey. This includes fast (regular), slow, and misaligned rotation, hot spheroids with embedded cold disk components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present-day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a significant influence on the rotation properties resulting in both a spin-down as well as a spin-up of the merger remnant. Lower mass galaxies with significant in-situ formation of stars, or with additional gas-rich major mergers - resulting in a spin-up - in their formation history, form elongated fast rotators with a clear anti-correlation of h3 and v/σ. An additional formation path for fast rotators includes gas-poor major mergers leading to a spin-up of the remnants. This formation path does not result in anti-correlated h3 and v/σ. The galaxies most consistent with the rare class of non-rotating round early-type galaxies grow by gas-poor minor mergers alone. In general, more massive galaxies have less in-situ star formation since z ∌ 2, rotate slower and have older stellar populations. (shortened)PostprintPeer reviewe

    Constraints on the relationship between stellar mass and halo mass at low and high redshift

    Full text link
    We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass function be reproduced. We find good agreement with constraints from galaxy-galaxy lensing and predictions of semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation, we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass are in excellent agreement with the observed clustering properties in the SDSS at z=0. We show that the clustering data do not provide additional strong constraints on the SHM function and conclude that our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function, which yields the average number of galaxies with stellar masses in the range [m, m+dm] that reside in a halo of mass M. We study the redshift dependence of the SHM relation and show that, for low mass halos, the SHM ratio is lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias at high redshift. Our model predicts that not only are massive galaxies more biased than low mass ones at all redshifts, but the bias increases more rapidly with increasing redshift for massive galaxies than for low mass ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass function, and the bias as a function of stellar mass and redshift.Comment: 21 pages, 17 figures, discussion enlarged, one more figure, updated references, accepted for publication in Ap

    Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope

    Get PDF
    We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector, called CELESTE, used first 40, then 53 heliostats of the former solar facility "Themis" in the French Pyrenees to collect Cherenkov light generated in atmospheric particle cascades. The signal from Mrk 421 is often strong. We compare its flux with previously published multi-wavelength studies and infer that we are straddling the high energy peak of the spectral energy distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab flux near 100 GeV. The data analysis and understanding of systematic biases have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 -- corrected error in author lis
    • 

    corecore