
1 t r  7"' (ACCESSION NUMBKR) 

(. 

/ 

c 
'(NASA CR OR TMX OR AD NUMBER) 

An Invariance in the Kronig-Kramer s I Relation 

P. H. Fang 
Goddard Space Flight Center, National Aeronautical 

and Space Administration 
Greenbelt, Md. 

and 
H. Oser 

National Bureau of Standards 
Washington, D.C. 

I. Introduction 

Given a pair of functions which satisfy the Kronig and Kramers '  

(K.K.) relation, l.2 when the variables of these functions a r e  t rans-  

formed to new variables,  we found that the requirement of the invariance 

of the K.K. relation provides a connection between the original and the 

transformed variables. This connection will be given in Part 11. In 

P a r t s  III and IV, we will  utilize the result  to establish a mathematical  

foundation of two graphical representations in the analysis of relaxation 

dispersions.  We will prove the almost completeness of the representa-  

tion in the sense that the graphs determine almost  completely the dis- 

per sion functions. 

11. An Invariance Relation 

In the notation of paramagnetic relaxation, the K.K. relation of a 

p l y  of functions, the dispersion, XI(") and the absorption, X I ' ( " )  a r e ,  
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Abstract  

F r o m  the restr ic t ion of the integration 

K r a m e r s '  relation, an invariance property 

variable in the Kronig- 

is established. This 

invariance relation is applied to establish the completeness of some 

representations used in  the analysis of the relaxation dispersions. 
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W e  a r e  interested in the possibility of changing w to another var-  

iable h which is a function o f w  , such that the K.K. relation remains un- 

changed after this variable transformation. Since the K.K. relation can 

be considered a s  a functional, our requirement is that the expressions,  

in ( l a ,b )  be form-invariant. 

The restr ic t ions on h a r e ,  f rom ( l a ,b ) ,  

h = 0 a t  w = 0, 

h - + m a s w - m  

h > 0 ,  and 

dh - > 0. 
dw 

Condition (3d) guarantees that h is a single valued function of w. 

the conditions of ( 3 ) ,  we have, 

F r o m  

h ( w )  = a. + a 1 w t a2w2 t . . . , (4) 

withao=O f rom (3a) and ai20 f rom (3c,d). Substituting (4) into the f i r s t  

expression of (2)-the same resul t  also follows f rom the other expres-  

sion - we have, 
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F r o m  the form invariance condition, therefore,  we have, ai = 0 for i # 1. 

The coefficient ul is non-zero and positive, otherwise unrestricted.  

F r o m  the above resul t ,  we conclude that the only permissible  var -  

iable transformation is 

We have, instead of ( l a ,b ) ,  the more  general relations,  

m w' [x' ( a w )  - 
XI' (uw) = xml dw' . 

III. Spectral  Representation of Relaxation Dispersions 

By spectral  representation we mean the plot of the dispersion func- 

and X" (a) as a function of w (Spectral representation I) o r  as 

Here and in the following 

tions,x'(w) 

a function of log w(Spectra1 representation 11). 

our  discussion will be confined to x'' (w) , but a paral le l  development 

based on x' (w) is trivial. 
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Using the Casimir  and DuPr i  absorption function in the spin- 

latt ice relaxation4 as an illustration, 

where r o  is the 

and the breadth 

3 relaxation time. W e  have, fo r  x ' ' ~ ~ ~ ,  
w = r0-' 

of the half -width i s ,  

= 2 ~6 ril. 

( 9 )  

Now we take a hypothetical absorption function, obtained f r o m  Eq. (8) 

by an a-transformation of Eq. ( 6 )  

a w r ,  

In this case ,  

w = a-1 7;' 
m 

In the spectral  representation I, a variation of a will be reilected in 

the change of the positions of om and the breadth A m l l 2 .  

appears  as if  the line shape is effected by the a-transformation, that 

is, i f  there is  an independent method to determine ro. However, we 

have investigated the mathematical formulation of the dispersion f m c -  

tion and w e  found that the transformation 

Therefore,  it 

o-ao 

is  accompanied simultaneously by the transformation 
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ro -. a-l ro 

and, indeed, ro and a cannot be independently determined. 

In the spectral  representation 11, the position of log om is  shifted 

by the a-transformation, but f rom the same argument as in represen-  

tation I, this shift  is not determinable. F o r  the half width, independent 

of Eq. (10) o r  (14), 
\ 

A log w ~ , ~  = 10q ( 7  + 4 n). (16) 

Therefore,  in representation 11, the line shape is independent of a .  In 

other words,  it is  an invariant of the a-transformation. . 

IV. Argand Diagram Representations 

The Argand diagram is a frequency t race  in the plane formed by 

~ ' ( w )  and ~ " ( w )  as coordinates, that i s ,  a parametr ic  representation 

of plotting ~ ' ( 0 )  against ~ " ( w )  with w as  a parameter .  This represen-  

tation has been introduced in the analysis of many relaxation dispersion 

phenomena!* especially in  the case of dielectric relaxation.6 From 

the general  property of the parametric representation, i t  might seem 

that the Argand diagram does not suffice to describe the dispersion 

functions ~ ' ( w )  and ~ " ( w )  completely. What we mean here  is  the fol- 

lowing: 

dispersion function pair ,  ignoring the match of the frequency param-  

eter, does it confirm the theoretical dispersion function. 

is yes ,  f rom the requirement of the K. K. relation, the only invariance 

If experimental data f i t  the Argand diagram of a particular 

The answer 
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of a parame-r ic  representation is a simultaneous change of the param- 

eter  w to a new variable h(w) in  both ~ ' ( w )  and ~ " ( u ) .  Equation ( 7 )  

r e s t r i c t s  this transformation to a linear one: h = aw . Therefore we 

conclude that, 

With the exception of an arbi t rary l inear transformation of f r e -  

quency which leaves zero and infinity invariant, the Argand diagram 

character izes  the dispersion functions uniquely. 

We would like to thank Professor  R. P. Lacroix of the Universit; 

de GenGve, who raised the original question7 to one of us  (PHF) leading 

into the present  investigation. 
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