L
View metadata, citation and similar papers at core.ac.uk brought to you byI CORE

provided by NASA Technical Reports Server
|

-

(Acczs:::éuazm /:c:m:’ E:_; Iz
DN =/ 70 19 L

(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

FACILITY FORM 802

i
An Invariance in the Kronig-Kramers' Relation
P. H. Fang
Goddard Space Flight Center, National Aeronautical
and Space Administration
Greenbelt, Md.
and
H. Oser
National Bureau of Standards
Washington, D.C.
I. Introduction
Given a pair of functions which satisfy the Kronig and Kramers'
(K.K.) relation,!:2 when the variables of these functions are trans-
formed to new variables, we found that the requirement of the invariance
of the K.K. relation provides a connection between the original and the
transformed variables. This connection will be given in Part II. In
Parts III and IV, we will utilize the result to establish a mathematical
foundation of two graphical representations in the analysis of relaxation
dispersions. We will prove the almost completeness of the representa-

tion in the sense that the graphs determine almost completely the dis-

persion functions.

II. An Invariance Relation
In the notation of paramagnetic relaxation, the K.K. relation of a

palr of functions, the dispersion, y'(«) and the absorption, y“(«) are,
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From the restriction of the integration variable in the Kronig-
Kramers' relation, an invariance property is established. This
invariance relation is applied to establish the completeness of some

representations used in the analysis of the relaxation dispersions.
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X“(w) = j' w [X (a)) = Xm] do'. (lb)
0

w? = w'?

We are interested in the possibility of changing @ to another var-
iable h which is a function ofw, such that the K.K. relation remains un-
changed after this variable transformation. Since the K.K. relation can

be considered as a functional, our requirement is that the expressions,

wdw and w' dw (2)
2_0)’2 '

w? —w'? w

in (la,b) be form-invariant.

The restrictions onh are, from (la,b),

h=0atw=0, (3a)

hewasw—o® (3b)

h >0, and (3c)
dh 5. (3d)
de

Condition (3d) guarantees thath is a single valued function of w. From
the conditions of (3), we have,
2

+ a w + A, W + ey (4)

h(w) = ao 1 2

witha;=0 from (3a) and a,20 from (3c,d). Substituting (4) into the first
expression of (2)-the same result also follows from the other expres-

sion - we have,



hdh! | wda' a,
h? - h'2 w? - w'? 1+:1_ (w+20') 4+ ...

a 2 12 -
{“a_z [@w')ﬁ:_ﬂ,_}...} 3 (5)
1 w4+ w

From the form invariance condition, therefore, we have, a, =0 fori# 1.

The coefficient a, is non-zero and positive, otherwise unrestricted.

From the above result, we conclude that the only permissible var-

iable transformation is

waalw. (6)

We have, instead of (la,b), the more general relations,

X' (aw) = X = j M do', (7a)
o WP - w2
o o [y (aw) -
x" (aw) = [X Xoo} do’. (7b)
0 a)2 _w/2 .

III. Spectral Representation of Relaxation Dispersions

By spectral representation we mean the plot of the dispersion func-
tions, x'(w) and x” (w) as a function of w (Spectral representation I) or as
a function of log w(Spectral representation II). Here and in the following
our discussion will be confined to x" (w), but a parallel development

3
based on x' (w) is trivial.



Using the Casimir and DuPré absorption function in the spin-

lattice relaxation® as an illustration,

, wT,
X" (@) = (x, = Xg) Troird’
where 7, is the relaxation time. We have, for x"m“,:’
w = '7'0"1

and the breadth of the half-width is,

_ -1
Aw1/2—2\/§7’0 .

(8)

(9)

(10)

Now we take a hypothetical absorption function, obtained from Eq. (8)

by an a-transformation of Eq. (6)

aw'ro

1+a20?

X" (@) = (x, = Xe)

2
To

In this case,

- _.1 _1
wm_a ’To
and

- -1 -1
Aw1/2_2 V3 un

(11)

(13)

(14)

In the spectral representation I, a variation of a will be reilected in

the change of the positions of w_ and the breadth Aw, ,. Therefore, it

appears as if the line shape is effected by the a-transformation, that

is, if there is an independent method to determine 7,. However, we

have investigated the mathematical formulation of the dispersion func-

tion and we found that the transformation
W—-awW:

is accompanied simultaneously by the transformation



T, = QA T (15)

and, indeed, 7, and a cannot be independently determined.

[

In the spectral representation II, the position of log w_ is shifted
by the a-transformation, but from the same argument as in represen-
tation I, this shift is not determinable. For the half width, independent
of Eq. (10) or (14),

\

A log w = log (7 + 4 V3). (16)
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Therefore, in representation II, the line shape is independent of a. In

other words, it is an invariant of the a-transformation.

IV. Argand Diagram Representations

The Argand diagram is a frequency trace in the plane formed by
x'(w) and y"(w) as coordinates, that is, a parametric representation
of plotting y '(w) against y"(w) with w as a parameter. This represen-
tation has been introduced in the analysis of many relaxation dispersion
phenomena#'5 especially in the case of dielectric relaxation.® From
the general property of the parametric representation, it might seem
that the Argand diagram does not suffice to describe the dispersion
functions x'@) and X"(w) completely. What we mean here is the fol-
lowing: If experimental data fit the Argand diagram of a particular
dispersion function pair, ignoring the match of the frequency param-
eter, does it confirm the theoretical dispersion function. The answer

is yes, from the requirement of the K. K. relation, the only invariance



of a parametric representation is a simultaneous change of the param-

eter @ to a new variable h(w) in both y'(w) and ¥"(w). Eguation (7)

restricts this transformation to a linear one: h = aw. Therefore we

conclude that,

With the exception of an arbitrary linear transformation of fre-

quency which leaves zero and infinity invariant, the Argand diagram

characterizes the dispersion functions uniquely.

We would like to thank Professor R. P. Lacroix of the Universitée

de Geneve, who raised the original question’ to one of us‘(PHF) leading

into the present investigation.
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