19 research outputs found

    Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    Get PDF
    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them

    Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology

    Get PDF
    With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage

    Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus

    Get PDF
    We thank Dr. Yizhen Deng at the Temasek Life sciences Laboratory (TLL) for providing the RFP-MoAtg8 plasmid. We would like to thank Drs. Zhenbiao Yang (University of California, Riverside) and Xianying Dou (Fujian Agriculture and Forestry University) for helpful discussions.Author Summary The rice blast fungus Magnaporthe oryzae utilizes key infection structures, called appressoria, elaborated at the tips of the conidial germ tubes to gain entry into the host tissue. Development of the appressorium is accompanied with autophagy in the conidium leading to programmed cell death. This work highlights the significance of the Vps35/retromer membrane-trafficking machinery in the regulation of autophagy during appressorium-mediated host penetration, and thus sheds light on a novel molecular mechanism underlying autophagy-based membrane trafficking events during pathogen-host interaction in rice blast disease. Our findings provide the first genetic evidence that the retromer controls the initiation of autophagy in filamentous fungi.Yeshttp://www.plosgenetics.org/static/editorial#pee

    Developmental and Environmental Regulation of Aquaporin Gene Expression across Populus Species: Divergence or Redundancy?

    Get PDF
    Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected

    Roles of aquaporins in root responses to irrigation

    No full text
    The original publication can be found at www.springerlink.comDue to current environmental issues concerning the use of water for irrigation, the improvement of crop water-use efficiency and a reduction in water consumption has become a priority. New irrigation methods that reduce water use, while still maintaining production have been developed. To optimise these techniques knowledge of above- and below-ground plant physiological responses is necessary. During growth, plant roots are exposed to cycles of wetting and drying in normal rain-fed and irrigation situations. This review concentrates on the below-ground aspects, in particular the water permeability of roots. Significant research has been conducted on the root anatomy and hydraulic conductivity of desert plants subjected to wetting and drying. Major intrinsic proteins (MIPs), most of which show aquaporin (water-channel) activity are likely to be involved in balancing the water relations of the plants during water deficit. However, many MIPs seem to allow permeation of other small neutral solutes and some may allow permeation of ions under certain conditions. The ability of the plant to rapidly respond to rewetting may be important in maintaining productivity. It has been suggested that aquaporins may be involved in this rapid response. The down-regulation of the aquaporins during dry conditions can also limit water loss to the soil, and intrinsic sensitivity of aquaporins to water potential is shown here to be very strong in some cases (NOD26). However, the response of aquaporins in various plant species to water deficits has been quite varied. Another component of aquaporin regulation in response to various stresses (hypoxia/anoxia, salinity and chilling) may be related to redistribution of flow to more favourable regions of the soil. Some irrigation techniques may be triggering these responses. Diurnal fluctuations of root hydraulic conductance that is related to aquaporin expression seem to match the expected transpirational demands of the shoot, and it remains to be seen if shoot-to-root signalling may be important in regulation of root aquaporins. If so, canopy management typical of horticultural crops may impact on root hydraulic conductance. An understanding of the regulation of aquaporins may assist in the development of improved resistance to water stress and greater efficiency of water use by taking into account where and when roots best absorb water

    Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry

    No full text
    Raspberry (Rubus idaeus) fruit colour was assessed in the Latham x Glen Moy mapping population using a colour meter and visual scores over three seasons and three environments. The colour measurements were found to be significantly associated with pigment content, have high heritability, and stable QTL were identified across environments and seasons. Anthocyanin content has previously been shown to be the major contributor to fruit colour in red raspberry. Major structural genes (F3'H, FLS, DFR, IFR, OMT and GST) and transcription factors (bZIP, bHLH and MYB) influencing flavonoid biosynthesis have been identified, mapped and shown to underlie QTL for quantitative and qualitative anthocyanin composition. Favourable alleles for the selected traits were identified for the aspects of fruit colour and partitioning of individual pigments
    corecore