194 research outputs found
Evolution of late steps in exocytosis:conservation and specialization of the exocyst complex
Background: The eukaryotic endomembrane system most likely arose via paralogous expansions of genes encoding proteins that specify organelle identity, coat complexes and govern fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events has moulded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical components, the emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis and additional trafficking pathways and a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family. CATCHR includes the conserved oligomeric Golgi (COG) complex, homotypic fusion and vacuole protein sorting (HOPS)/class C core vacuole/endosome tethering (CORVET) complexes and several others. The exocyst is integrated into a complex GTPase signalling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist Trypanosoma brucei, and availability of significantly increased genome sequence data, we re-examined evolution of the exocyst. Methods: We examined the evolution of exocyst components by comparative genomics, phylogenetics and structure prediction. Results: The exocyst composition is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants, Metazoa and land plants, where for the latter, massive paralog expansion of Exo70 represents an extreme and unique example. Significantly, few taxa retain a partial complex, suggesting that, in general, all subunits are probably required for functionality. Further, the ninth exocyst subunit, Exo99, is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms. </p
Genome-scale modeling of the protein secretory machinery in yeast
The protein secretory machinery in Eukarya is involved in post-translational modification (PTMs) and sorting of the secretory and many transmembrane proteins. While the secretory machinery has been well-studied using classic reductionist approaches, a holistic view of its complex nature is lacking. Here, we present the first genome-scale model for the yeast secretory machinery which captures the knowledge generated through more than 50 years of research. The model is based on the concept of a Protein Specific Information Matrix (PSIM: characterized by seven PTMs features). An algorithm was developed which mimics secretory machinery and assigns each secretory protein to a particular secretory class that determines the set of PTMs and transport steps specific to each protein. Protein abundances were integrated with the model in order to gain system level estimation of the metabolic demands associated with the processing of each specific protein as well as a quantitative estimation of the activity of each component of the secretory machinery
Membranes by the Numbers
Many of the most important processes in cells take place on and across
membranes. With the rise of an impressive array of powerful quantitative
methods for characterizing these membranes, it is an opportune time to reflect
on the structure and function of membranes from the point of view of biological
numeracy. To that end, in this article, I review the quantitative parameters
that characterize the mechanical, electrical and transport properties of
membranes and carry out a number of corresponding order of magnitude estimates
that help us understand the values of those parameters.Comment: 27 pages, 12 figure
Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage
Pore timing:the evolutionary origins of the nucleus and nuclear pore complex
The name “eukaryote” is derived from Greek, meaning “true kernel”, and describes the domain of organisms whose cells have a nucleus. The nucleus is thus the defining feature of eukaryotes and distinguishes them from prokaryotes (Archaea and Bacteria), whose cells lack nuclei. Despite this, we discuss the intriguing possibility that organisms on the path from the first eukaryotic common ancestor to the last common ancestor of all eukaryotes did not possess a nucleus at all—at least not in a form we would recognize today—and that the nucleus in fact arrived relatively late in the evolution of eukaryotes. The clues to this alternative evolutionary path lie, most of all, in recent discoveries concerning the structure of the nuclear pore complex. We discuss the evidence for such a possibility and how this impacts our views of eukaryote origins and how eukaryotes have diversified subsequent to their last common ancestor
Red and green loops help uncover missing feedbacks in a coral reef social–ecological system
Social–ecological systems (SES) exhibit complex cause‐and‐effect relationships. Capturing, interpreting, and responding to signals that indicate changes in ecosystems is key for sustainable management in SES. Breaks in this signal–response chain, when feedbacks are missing, will allow change to continue until a point when abrupt ecological surprises may occur. In these situations, societies and local ecosystems can often become uncoupled. In this paper, we demonstrate how the red loop–green loop (RL–GL) concept can be used to uncover missing feedbacks and to better understand past social–ecological dynamics. Reinstating these feedbacks in order to recouple the SES may ultimately create more sustainable systems on local scales. The RL–GL concept can uncover missing feedbacks through the characterization of SES dynamics along a spectrum of human resource dependence. Drawing on diverse qualitative and quantitative data sources, we classify SES dynamics throughout the history of Jamaican coral reefs along the RL–GL spectrum. We uncover missing feedbacks in red‐loop and red‐trap scenarios from around the year 600 until now. The Jamaican coral reef SES dynamics have moved between all four dynamic states described in the RL–GL concept: green loop, green trap, red loop and red trap. We then propose mechanisms to guide the current unsustainable red traps back to more sustainable green loops, involving mechanisms of seafood trade and ecological monitoring. By gradually moving away from seafood exports, Jamaica may be able to return to green‐loop dynamics between the local society and their locally sourced seafood. We discuss the potential benefits and drawbacks of this proposed intervention and give indications of why an export ban may insure against future missing feedbacks and could prolong the sustainability of the Jamaican coral reef ecosystem. Our approach demonstrates how the RL–GL approach can uncover missing feedbacks in a coral reef SES, a way the concept has not been used before. We advocate for how the RL–GL concept in a feedback setting can be used to synthesize various types of data and to gain an understanding of past, present and future sustainability that can be applied in diverse social–ecological settings
The Non-Canonical CTD of RNAP-II Is Essential for Productive RNA Synthesis in Trypanosoma brucei
The carboxy-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II (RNAP-II) is essential for gene expression in metazoa and yeast. The canonical CTD is characterized by heptapeptide repeats. Differential phosphorylation of canonical CTD orchestrates transcriptional and co-transcriptional maturation of mRNA and snRNA. Many organisms, including trypanosomes, lack a canonical CTD. In these organisms, the CTD is called a non-canonical CTD or pseudo-CTD (ΨCTD. In the African trypanosome, Trypanosoma brucei, the ΨCTD is ∼285 amino acids long, rich in serines and prolines, and phosphorylated. We report that T. brucei RNAP-II lacking the entire ΨCTD or containing only a 95-amino-acid-long ΨCTD failed to support cell viability. In contrast, RNAP-II with a 186-amino-acid-long ΨCTD maintained cellular growth. RNAP-II with ΨCTD truncations resulted in abortive initiation of transcription. These data establish that non-canonical CTDs play an important role in gene expression
Rab protein evolution and the history of the eukaryotic endomembrane system
Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity
The Evolution of Extracellular Matrix
We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology
- …
