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Abstract
The name “eukaryote” is derived from Greek, meaning “true kernel”, and
describes the domain of organisms whose cells have a nucleus. The nucleus is
thus the defining feature of eukaryotes and distinguishes them from
prokaryotes (Archaea and Bacteria), whose cells lack nuclei. Despite this, we
discuss the intriguing possibility that organisms on the path from the first
eukaryotic common ancestor to the last common ancestor of all eukaryotes did
not possess a nucleus at all—at least not in a form we would recognize
today—and that the nucleus in fact arrived relatively late in the evolution of
eukaryotes. The clues to this alternative evolutionary path lie, most of all, in
recent discoveries concerning the structure of the nuclear pore complex. We
discuss the evidence for such a possibility and how this impacts our views of
eukaryote origins and how eukaryotes have diversified subsequent to their last
common ancestor.
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Introduction
The origin of eukaryotes occurred over one and a half billion 
years ago. Unlike prokaryotes (Archaea and Bacteria), eukaryo-
tic cells possess a complex and differentiated endomembrane 
system: the endoplasmic reticulum (ER), the Golgi complex, 
vacuoles, and families of coating complexes to form vesicles that 
traffic between them. Recent findings have allowed us to recon-
struct the evolutionary history and development of these endomem-
brane systems from their ancient prokaryotic ancestors. Protein 
families that are central to the construction and function of  
endomembrane compartments include Rab and ARF (ADP- 
ribosylation factor) small GTPases; vesicle coat proteins such 
as clathrin, COPI, and COPII; and the ESCRT (endosomal sort-
ing complexes required for transport) proteins1–5. Crucially, 
with the exception of ESCRT (which appears to have undergone 
minimal expansion despite acquiring multiple roles)6, these  
eukaryotic families arose through paralogous expansions from  
their ancestral prokaryotic genes1,3.

Of course, the largest and indeed the defining endomembrane 
compartment of eukaryotes is their nucleus, which contains and 
organizes almost all of the cell’s genetic material. The modern 
eukaryotic nucleus is bounded by a double-membrane nuclear 
envelope (NE), which is contiguous with, and functionally related 
to, the ER. Embedded in the NE are nuclear pore complexes 
(NPCs), which are among the most recognizable and defining  

macromolecular assemblies associated with the nucleus. The 
NPCs of all eukaryotes studied so far share a basic bauplan—a 
minimal set of common architectural features—although there 
are significant lineage-specific variations7–10 (Figure 1). Each 
NPC is composed of about 30 different kinds of proteins, termed 
nucleoporins (or Nups), present in about 500 copies that form 
an annular structure of between 50 and 100 MDa (depending on 
the organism) with an overall eight-fold radial symmetry7,8,10–14.  
At the heart of the NPC is a core scaffold composed of coaxial 
outer and inner rings that in turn are connected to a membrane 
ring. Having a nuclear basket and an export platform at the 
cytoplasmic face, the NPC is asymmetric along its cylindrical 
axis. Collectively, all these discrete, relatively rigid assemblies 
are linked by flexible connector cables, an architecture that  
imbues the NPC with both flexibility and strength10,14–18. The 
scaffold surrounds a central channel, whose inner wall is lined 
with nucleoporins termed FG (phenylalanine-glycine) Nups, 
from which project domains with multiple, intrinsically disor-
dered FG repeat motifs that fill the channel and form a region 
termed the central transporter. These FG repeats mediate selec-
tive nucleocytoplasmic transport through specific interactions 
with nuclear transport factors, which carry their cognate macromo-
lecular cargoes14,19–21.

It remains unclear whether the nucleus arose as the first intra-
cellular organelle or whether other organelles were already 

Figure 1. Diversity within modern nuclear pore complex (NPC) structures. (A) Four NPC examples are shown from different taxa, metazoa, 
fungi, green alga, and kinetoplastids (some elements speculative in the latter), and approximate evolutionary relationships are shown at the 
far left. (B) A schematic of a generic NPC, based on the Saccharomyces cerevisiae structure, is shown at the top right. (C) Variations in 
the scaffold structure, export platform, cytoplasmic face remodeling complex, and the nuclear basket structures are indicated. The outer 
and inner ring nucleoporin (Nup) complex subunit arrangements are shown at the bottom right, emphasizing the distinct coat architectures 
present. Type I coats are red and type II are blue. FG, phenylalanine-glycine.
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present within transitional eukaryotes (that is, those prior to the  
emergence of the last eukaryotic common ancestor, or LECA). 
The complexity of the modern “true” nucleus does suggest that the  
current form was unlikely to have been the ancestral state or 
present at the beginning of eukaryogenesis. We can safely assume  
that early nuclear forms were simpler structures but that they  
provided some selective advantage (see below). Eukaryotes also 
possess mitochondria, which originally were bacterial and were 
gained through an endosymbiotic event. However, the point at 
which mitochondrial endosymbiosis occurred relative to nuclear 
origin has been unclear. For example, while robust arguments 
for early mitochondrial origins, to provide sufficient energy 
for synthesis and maintenance of the sophisticated eukaryotic 
endomembrane system, have been made22,23, others have coun-
tered that a phagocytic apparatus is essential for the mitochondrial  
progenitor to have invaded the host cell24–26 and that phylogenetic  
evidence also suggests a late mitochondrion27.

Critically, evolution of the endomembrane system and integra-
tion of the mitochondrial bacterial ancestor with the host cell 
are events requiring a great deal of time but are not necessarily  
coupled, such that the two processes could actually occur in  
parallel or in series. A focus on the timeline of mitochondrial  
origins also overlooks another origin question—that of the 
nucleus. Reasonably, it has long been assumed that the nucleus, 
being the defining organelle of eukaryotes, arose very early 
around the time of the first eukaryotic common ancestor (FECA) 
and elaborated to the structure we recognize now by the time that  
LECA arose28. But is this actually the case? Recent work on the 
architecture of vesicle coating complexes and the NPC challenges 
this assumption and suggests alternate possibilities.

Origins of the first membrane coating complex
Trafficking between the endomembrane systems is mediated by 
complexes that coat membranes to induce budding of vesicles 
as well as to define and stabilize the compartments themselves.  
The great majority of these coating complexes contain α-solenoid  
and β-propeller folds and the characteristic combination of 
an N-terminal β-propeller and C-terminal α-solenoid (that is,  
β-α) (Figure 2). Furthermore, all coating complexes are associ-
ated with, and regulated by, small GTPases, albeit with diverse 
mechanisms (reviewed in 3). The ubiquity of these features indi-
cates that all coating complexes in this extensive group must 
have originated from a common ancestor, early in the path from  
FECA to LECA and with progenitors pre-FECA. Some evidence 
of this may have been found in the Asgard archaea lineage;  
members of this lineage are suggested to possess genes encod-
ing proteins similar to the B-propeller fold protein Sec13 and  
α-solenoid-containing proteins as well as Rab-like GTPases,  
the basic building blocks required for a primitive vesicle coat1,29,30.

Elaboration of the coating and endomembrane 
systems
At least two major families of the β-α class of vesicle coat-
ing protein can be differentiated, each having discrete vesicle  
recognition and trafficking roles. The type I family contains the 
COPI coating complex, which largely mediates Golgi-to-ER 
trafficking together with various complexes based around clath-
rin, which mediate trafficking from the plasma membrane to  

endosomes and additional endosomal pathways. The type II  
family contains the COPII complex, which mediates ER-to-Golgi  
trafficking4,31. Phylogenetic reconstructions for the type I family  
exhibit a clear path of expansion, which likely reflects the 
evolution of increasingly complex post-Golgi trafficking  
systems during the period between FECA and LECA4.

Each family carries a distinct arrangement of the β-α folds. The 
type I family has coatomers with a (more or less) straight α-solenoid  
following the β-propeller fold region; several associated 
adaptins responsible for protein sorting within the endomem-
brane system also have an α-solenoid fold. The type II family 
has coatomers possessing α-solenoids with a characteristic 
U-turn topology, following the β-propeller fold region and also 
associated smaller proteins containing only a β-propeller fold  
(Figure 1 and Figure 2)5,31–36. These distinct and conserved 
morphologies of the type I and type II families indicate that  
the next step after development of a vesicle coating system was 
divergence into two coating families with distinct architectures 
and functions in what therefore must have been by this point a 
differentiated membrane system (that is, one in which distinct  
compartments—presumably progenitors of the ER, Golgi, and  
possibly endosomes—were present)3,4.

Evolutionary origins of the nuclear pore complex
Recent high-precision structures from different species have 
allowed a much more detailed look at how the NPC might have 
originated7,8,10,13. As well as forming the structural foundation 
of the NPC, the core scaffold serves to coat and define the 
shape of the pore membrane, the membranous fenestration in 
the NE within which the NPC sits. The NPC’s resemblance to a  
vesicle coat does not end there; indeed, essentially, the entire 
core scaffold is constructed from Nups that share their folds 
with those of the vesicle coating complexes, and the NPC even  
contains one protein shared with the COPII coat (Sec13) 
and another (Seh1) shared with the coat-related SEA (Seh1- 
associated) tethering complex. This clear relationship between 
NPCs and vesicle coating proteins led to the “protocoatomer” 
hypothesis, proposing that a huge number of different mem-
brane-associated complexes have a common evolutionary origin.  
Originally, this focused on the NPC and the COPI, COPII, and 
clathrin complexes that coat and stabilize curved membranes 
but recently has been extended to include several tethering  
complexes and the intraflagellar transport system37–40. Neverthe-
less, all of these complexes still carry proteins with only either  
type I or type II fold arrangements.

Strikingly, though, the NPC stands out from all other known 
coat complexes as containing proteins with both type I and 
type II features (Figure 1 and Figure 2). There are two possible 
routes by which this could have arisen; specifically, a progeni-
tor NPC was formed from exclusively type I or type II subunits 
and then acquired additional subunits of the other type, or the  
NPC was a mélange of type I and type II from the start. The 
first possibility would indicate the evolution of a primitive NPC 
quite early in eukaryogenesis and possibly even prior to the split 
between the type I and II architectures, but the second model 
emphatically requires a later origin after the establishment  
of the two coat types.
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Figure 2. Type I and type II coat protein architectures and locations within the nuclear pore complex. (A) Examples of type I and type II 
architectures are shown. Type I coats are red and type II are blue. Idealized structures appear above, and examples of structures determined 
by x-ray (COPI subunits pdf:5A1U and COPII subunits pdf:4BZJ as representatives of type I and type II, respectively) appear below. Note the 
characteristic β-propeller head and α-solenoid tail in both type I subunits, the α-solenoid adaptin-like subunit in type I, and the clear presence 
of a discontinuity and loop in the α-solenoid following the β-propellers in type II. (B) A section of the Saccharomyces cerevisiae nuclear pore 
complex structure is shown at the bottom, illustrating only the type I– and type II–related subunits. Note the intermixing of types within the 
overall structure.
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Is there evidence that favors one of these two models over the 
other? Clues that collectively discriminate between these two  
models can again be found in the scaffold architecture of the  
NPC, which contains remnants or “molecular fossils” of its pre-
cursors. There is a repetitive modularity within the core scaf-
fold. It is made of eight spokes, each of which can be divided  

vertically into two paralogous columns that clearly arose through 
duplication. The inner and outer rings are also structurally 
related. Although the order of these duplications cannot be 
fully resolved, it is clear that an early NPC contained a subunit  
whose early duplication and divergence event presumably led 
to paralogous subunits (Figure 3)8,10,11,41. This is because the 

Figure 3. Timeline for evolution of coat complexes, mitochondrial enslavement, and nuclear pore complex (NPC) elaboration.  
(A) The top system illustrates acquisition and gradual enslavement of the mitochondrion by transfer of genes from the original bacterial 
genome to the genome of the host cell. Dotted lines indicate uncertainty concerning both the point of endosymbiont acquisition and duration 
of the overall process. (B) The top middle system depicts hypothetical general structures of transitional eukaryotic cellular forms at various 
stages during the process of eukaryogenesis. The location and type of protocoatomer are indicated by colored crescents. Note the amalgam 
coat of the NPC. (C) The lower middle system is a proposed timeline for the evolution of vesicular coat complexes, colored to correspond 
with the cellular diagrams. The earliest proto-eukaryote is suggested to have a single ancestral coat (protocoatomer), which is derived 
from Archaeal genes. In many prokaryotes, such genes are present, but the β-propellers and α-solenoids are not fused to encode a single 
protein. Examples of type I and type II architectures are shown at the right, together with examples of specific complexes present in modern 
eukaryotes. (D) The lower system illustrates a possible route for the evolution of the NPC, placing emphasis on the duplication of subunits 
and merging of protocoatomer type I and type II to create the modern NPC structure. Ovals represent subunits in the evolving NPC and are 
differently shaded to indicate duplications. Type I coats are red, type II are blue, and protocoatomer is purple. Putative archaeal lineages  
and proteins are shown in gray. FECA, first eukaryotic common ancestor; LECA, last eukaryotic common ancestor.
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spokes, columns, and inner and outer rings share similar archi-
tectures and folds. Thus, the inner and outer rings each contain 
truncated versions of a COPI-like coatomer, a COPII-like 
coatomer, and a coiled-coil bundle. For example, these duplica-
tions can be seen in the recently solved yeast (Saccharomyces)  
NPC structure (Figure 2). The inner ring Nic96 subunit and 
outer ring Nup84, Nup85, and Nup145C subunits have the  
distinctive solenoid architecture of type II coatomer subunits 
found in Sec3142. Indeed, Nup145C associates with Sec13, itself 
a bona fide COPII subunit. In contrast, the inner ring Nup170  
and Nup157 subunits together with the outer ring Nup120 
and Nup133 components all have characteristic type I archi-
tectures. Moreover, Nup170 and Nup157 associate with two 
adaptin-like Nups, respectively Nup192 and Nup188, a sub-
complex that bears similarities to the clathrin coat system. The  
major family of soluble cargo-carrying nuclear transport factors 
collectively termed karyopherins share this adaptin-like struc-
ture, suggesting that they also originated from, and co-evolved  
with, the elaborating NPC38,43,44.

A late evolutionary origin for the nucleus
Crucially, all of these paralogous subunits now scattered through-
out the NPC scaffold retain signatures of both type I and type 
II families, which implies that the original progenitor NPC 
formed through an amalgamation of both type I and II families 
of coating complex. This in turn implies that ancestral type I and 
type II coating families evolved first, together with an already- 
differentiated internal membrane system, before the modern 
NPC had arisen. However, these structures would be lacking 
any of the key defining features and functions that typify NPCs 
and NEs in extant organisms. The model implies that a true 
nucleus, which is structurally and compositionally defined largely 
by the NE and embedded NPCs, was a later addition on the  
path to the evolution of early eukaryotes. This is a radical  
departure from most previous eukaryogenesis models, which have 
focused on the relative timing of the acquisition of the mitochon-
drion versus the endomembrane system. Most significantly, this 
new model also considers a more gradual progression for both 
nuclear and mitochondrial origins prior to the eventual emer-
gence of the modern form of the nucleus28. FECA, and many  
intermediates between it and LECA, will not have possessed a  
modern nucleus or many of the other features considered char-
acteristic of eukaryotes; rather, these features were “works in  
progress” until comparatively late in eukaryogenesis.

Diversification of the nuclear pore complex
In just the last few years, there has been an explosion of infor-
mation concerning the composition, stoichiometry, and even  
the fine structure of NPCs from divergent taxa, allowing a more 
detailed view of the likely LECA NPC structure and how this can 
diverge in response to the distinct lifestyles of different organ-
isms. Protein components of the NPCs from various species have 
been determined at varying levels of completeness and include 
Schizosaccharomyces pombe45, Chaetomium thermophilum15,  
Arabidopsis thaliana46, Tetrahymena thermophila47, Trypanosoma 
brucei48, Homo sapiens, and Rattus rattus49,50, and more detailed 
EM analyses are available for Saccharomyces cerevisiae, Homo 
sapiens, Xenopus laevis, and Chlamydomonas reinhardtii7,8,10,51.

Originally, it was thought that there had been considerable 
conservation of NPC architecture despite extensive sequence  
divergence of individual Nups48. However, this view now seems 
premature, and new analyses of NPCs from multiple species 
paint a more complex picture (Figure 1 and Figure 3)7–10,13.  
Rather, a “one size fits all” model17 is clearly inaccurate and, 
even while there is indeed an underlying and conserved baup-
lan, the NPC is composed of modules (each containing just a few  
Nups) which can be assembled in a surprisingly large variety 
of arrangements and specializations, likely often through the 
same processes of duplication and divergence that led from the  
post-FECA proto-NPC to the full LECA NPC. This is highly  
reminiscent of LEGO™, where many different forms can be  
easily created from the same small set of building blocks.  
Significantly, NPCs even have distinct compositions in differ-
ent tissues, attesting to the careful tuning of NPC structure to  
function in a specific cellular context52–54.

A comparison of a recently determined vertebrate scaffold struc-
ture with the scaffold from the complete yeast NPC structure 
illustrates these processes (Figure 1)8,10. There are yeast paralogs 
(for example, Nup170 and Nup157) absent from vertebrates (only 
Nup155). Vertebrates also carry duplicates of the entire outer 
ring such that there are 32 copies of the complex that comprises 
this ring and so there are four outer rings per NPC in vertebrates  
while there are 16 such complexes and two outer rings in yeast. 
Vertebrates also have extra copies of the inner ring Nup155 
and possibly Nup188 or Nup205 (Nup157/Nup170, Nup188, 
and Nup192, respectively, in yeast). These and other verte-
brate-specific additions and alterations mean that, at about  
109 MDa, the vertebrate NPC likely weighs in at around twice 
the 52.3-MDa yeast NPC. However, we find that the total mass of 
the central transporter FG repeats is surprisingly constant: about 
9 MDa in yeast, human, and trypanosome NPCs (although this is 
based on assumptions in terms of stoichiometry of the trypano-
somal FG-Nups)8–10. Even the proportion and distribution of cer-
tain types of FG repeat seem conserved,—there being mainly 
either “FXFG” (phenylalanine-X-phenylalanine-glycine) or 
“GLFG” (glycine-leucine-phenylalanine-glycine) types of repeats. 
It seems possible that the central transporter—the core machin-
ery of transport—has strict bounds in terms of mass, density, and 
composition even if the precise sequence and arrangement of FG  
repeats may vary between species.

Drastic alterations of the outer ring subcomplex are also found 
in other organisms, indicating that this module of the NPC is  
particularly susceptible to lineage-specific modulation (Figure 1). 
Perhaps this is because the outer ring, being involved mainly in  
NE attachment and shaping the NPC and having little direct 
involvement in defining the central transporter machineries, 
is less structurally and functionally constrained10. Unlike in  
S. cerevisiae and vertebrates, in another yeast, S. pombe, the rela-
tive stoichiometry of outer ring Nups is non-uniform between 
the cytoplasmic and nuclear facing subcomplexes, indicating  
a significant deviation in outer ring complex architecture45. Fur-
ther afield, NPCs in the micronuclei of the ciliate T. thermophila  
differ significantly in composition from those in macronuclei, 
and numerous Nup paralogs are specifically localized to one or 
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the other type of nucleus47. In the algae C. reinhardtii, cryogenic 
electron microscopy (cryo-EM) revealed that there are two  
outer rings on the NPC nuclear side but only one on the cyto-
plasmic side. Moreover, the diameter of the inner ring and 
central channel is significantly larger than in either yeast or  
vertebrates7. There is also considerable variation in the trans- 
membrane protein identities between these organisms.

Finally, in the highly divergent trypanosomes, there are a number 
of Nups with no obvious homologs in other taxa. The trypano-
some NPC also lacks trans-membrane Nups with any discernable 
evolutionary relationship to membrane Nups in other organ-
isms and the entire NPC arrangement contrasts with those 
of other organisms in being almost entirely symmetric in the 
deployment of the FG repeat-containing Nups around a cylin-
drical axis9. Even greater variation is found in the more periph-
eral NPC structures, the nuclear basket, and cytoplasmic export  
platform. The size of the core coiled-coil basket-associated pro-
teins varies greatly between species, ranging from about 200 kDa 
in Opisthokonta to only about 100 kDa in trypanosomes55.  
In the cytoplasmic export platform, there is huge variation in 
the type and number of docking sites for accessory transport 
proteins. Trypanosomes have a simple peripheral organization 
and lack any obvious transport factor docking sites beyond the  
FG repeats9. In S. cerevisiae, docking sites are present on the 
NPC cytoplasmic side for several RNA remodeling proteins, 
including Gle1 and Dbp5; the lack of both of these docking  
sites and genes encoding the remodeling proteins in trypano-
somes is likely a reflection of distinct mRNA splicing mecha-
nisms, as previously discussed3,56. In vertebrates, elaborate 
arrays of docking sites exist on the cytoplasmic platform, both 
for such RNA remodeling proteins and for nuclear transport  
accessory proteins such as Ran, RanGAP (Ran GTPase-activating  
protein), and Ubc9 (ubiquitin-conjugating gene product 9)57,58. 
All of these examples of dramatic lineage-specific NPC struc-
tures underscore the need for direct, high-resolution structural and  
functional studies in multiple organisms, which are based on a 
firm evolutionary foundation, rather than drawing conclusions 
on the demonstrably false premise of structural interchange-
ability between divergent species; the latter is the equivalent of  
taking cod bones, stuffing them in a puffin skin, and calling it an  
accurate model of Leifur Eiriksson.

Implications
The division between prokaryote and eukaryote cellular archi-
tectures represents a great divide in the evolution of life on 
earth, and the process of eukaryogenesis is recognized as one  
of life’s major evolutionary transitions59. Many innovations 
were required to achieve this, including the formation of an 
elaborate and differentiated endomembrane system, a complex 
cytoskeleton, endosymbiosis and integration of the mitochon-
drion, and the formation of a nucleus with a nuclear transport 
system to ferry cargoes across the NE via the NPC. The relative  
order of emergence of these innovations has remained both an 
important aspect of understanding eukaryogenesis and an area 
of intense debate. Most models tend to gravitate around two  
alternative scenarios. In the first, it is suggested that there 
was a prior need for a mitochondrion in order to power the  
evolution of subsequent cellular innovations; in the second, it 

is countered that this power source was not needed and that the 
cell was already well on the way toward an elaborate eukaryo-
tic cellular architecture before it gained a mitochondrion22–26.  
However, we suggest an alternative third model, both plausible 
and supported by recent data from NPC structures, where both 
mitochondrial enslavement and elaboration of an endomem-
brane system occurred roughly in parallel during the transition 
from the Archaea to LECA (Figure 3). This process started with 
a single “protocoatomer” to begin the formation of endomem-
branes, which duplicated and diverged into the ancestors of  
the type I and type II families of coating complexes in order to 
help drive the diversification of the endomembrane system into 
the ancestors of the Golgi, the ER, and endosomes. Members 
of the type I and type II families came together in a partnership 
to form the first proto-NPCs in a differentiating NE. Our model 
implies that the nucleus, the organelle defining the name  
“eukaryote” (“with nucleus”), was actually a significantly later 
addition on the path to the evolution of the early eukaryotes, 
after the formation of differentiated endomembranes and coat-
ing systems. This should also be placed in the context of other 
events that could have taken place concurrently (for example, 
transfer of genes from the mitochondrial endosymbiont to the 
nucleus and the formation of the cytoskeleton). In a very real 
sense, this questions the concept of FECA as a fixed point on the  
pathway of eukaryogenesis.

What would the state of a nucleus have been in the transitional 
period, and why did the NPC arrive at the present architecture? 
We have previously argued that a proto-NPC could have acted 
as a membrane organizer such that the genome became associ-
ated with a rather open membrane—containing fenestrations sta-
bilized by a primitive assembly—that at some point recruited 
both type I and type II coating complex family members40.  
This structure would have provided some mechanical protection  
for the genome as well as the potential beginnings of organi-
zation at the NE. Such a system had to be retrofitted to accom-
modate the selective transport of thousands of macromolecules  
that previously enjoyed free access to the genome. The evolu-
tionary origin of the selective permeability barrier may also have 
been a relatively simple modification of existing elements: the  
flexible connectors could have expanded to form the FG 
repeat regions (many of which are still associated with flex-
ible connector regions), and the α-solenoid adaptin-like Nups 
that the connector cables attach to could have evolved to form the  
karyopherin family of transport factors, which they still closely 
resemble38,43,44. It is unknown whether the karyopherins evolved 
early pre-LECA, although the diverse families indeed were  
present at that time60. In summary, the NPC is a prime example 
of the evolution of evolvability, superbly adaptable by specific 
lineages. These changes are clear from the ancient history of 
the NPC as inferred for the origins of the structure present in 
the LECA as well as continuing to the present day, with vari-
ation of NPC structures in distinct lineages or tissues now being  
widely reported.
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