14 research outputs found

    The effect of feto-maternal blood type incompatibility on development of gestational diabetes mellitus

    No full text
    PubMed ID: 24770823Objective. To assess the relation between fetal and maternal blood type (ABO, Rh) incompatibility and development of gestational diabetes mellitus (GDM). Materials and Methods. A total of 500 pregnant women underwent diagnostic test for GDM by a 100-g oral glucose tolerance test (OGTT) after an 8 to 12-h overnight fast participated in this study. OGTT was performed between the 24-28 weeks of gestation, but participants who were at high risk for GDM were tested after the first prenatal visit. In the postpartum period, maternal and infant blood types were determined. Presence of GDM was evaluated in terms of matched and unmatched fetal and maternal ABO and Rh blood types separately. Results. GDM was detected in 235 participants. Unmatched ABO blood types between the mother-infant pairs were present in 44.7% (n=105) of GDM (+) and 35.8 % (n=95) of GDM (-) patients. Incompatible feto-maternal ABO blood type was positively correlated with development of GDM which was marginally significant. (p=0.045; R=1.2;95% CL; 1.004-1.48). However, Rh feto-maternal blood type incompatibility was not related with development of GDM. Conclusions. Feto-maternal ABO blood type incompatibility may be a weak risk factor for the development of GDM. © Società Editrice Universo (SEU)

    Turkish nationwide survEy of glycemic and other Metabolic parameters of patients with Diabetes mellitus (TEMD study)

    No full text
    AIMS: Turkey has the highest prevalence of diabetes in Europe. It is therefore essential to know the overall cardiovascular risk and reveal the predictors of metabolic control in Turkish adults with diabetes mellitus. METHODS: A nationwide, multicenter survey consecutively enrolled patients who were under follow up for at least a year. Optimal control was defined as HbA1c < 7%, home arterial blood pressure (ABP) < 135/85 mmHg, or LDL-C < 100 mg/dL. Achieving all parameters indicated triple metabolic control. RESULTS: HbA1c levels of patients (n = 5211) were 8.6 ± 1.9% (71 ± 22 mmol/mol) and 7.7 ± 1.7% (61 ± 19 mmol/mol), in Type 1 and Type 2 diabetes, respectively. Glycemic control was achieved in 15.3% and 40.2%, and triple metabolic control was achieved in 5.5% and 10.1%, respectively. Only 1.5% of patients met all the criteria of being non-obese, non-smoker, exercising, and under triple metabolic control. Low education level was a significant predictor of poor glycemic control in both groups. CONCLUSIONS: Few patients with Type 2, and even fewer with Type 1 diabetes have optimal metabolic control in Turkey. TEMD study will provide evidence-based information to policy makers to focus more on the quality and sustainability of diabetes care in order to reduce the national burden of the disease

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade
    corecore