13 research outputs found

    ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales

    Get PDF
    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5 degrees grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (V-cmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r(2) = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r(2) = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r(2) = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r(2) = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r(2) values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r(2) values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r(2) <0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized V-cmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average V-cmax value.Peer reviewe

    Klimatet

    No full text

    Large-scale forest girdling shows that current photosynthesis drives soil respiration

    No full text
    The respiratory activities of plant roots, of their mycorrhizal fungi and of the free-living microbial heterotrophs (decomposers) in soils are significant components of the global carbon balance, but their relative contributions remain uncertain(1,2). To separate mycorrhizal root respiration from heterotrophic respiration in a boreal pine forest, we conducted a large-scale tree-girdling experiment, comprising 9 plots each containing about 120 trees. Tree-girdling involves stripping the stem bark to the depth of the current xylem at breast height terminating the supply of current photosynthates to roots and their mycorrhizal fungi without physically disturbing the delicate root-microbe-soil system. Here we report that girdling reduced soil respiration within 1-2 months by about 54% relative to respiration on ungirdled control plots, and that decreases of up to 37% were detected within 5 days. These values clearly show that the flux of current assimilates to roots is a key driver of soil respiration; they are conservative estimates of root respiration, however, because girdling increased the use of starch reserves in the roots. Our results indicate that models of soil respiration should incorporate measures of photosynthesis and of seasonal patterns of photosynthate allocation to roots. [References: 18

    Effects of whole-tree harvesting at thinning and subsequent compensatory nutrient additions on carbon sequestration and soil acidification in a boreal forest

    Get PDF
    Residues from forest harvesting operations may be utilized as a renewable energy source. However, the sustainability of this practice has been questioned due to the losses of nutrients and exchangeable base cations, which may impair the forest's carbon sequestration capacity and lead to soil acidification. We report the 18 year response of biomass growth, soil carbon stock and soil chemistry to whole-tree harvest at thinning and associated compensatory measures in aPinus sylvestrisforest in northern Sweden. The whole-tree harvest at thinning was combined with nutrient additions to compensate for the nutrient loss caused by extracting the residues. Four main treatments, stem-only thinning, whole-tree thinning, whole-tree thinning with one-time nitrogen fertilization and whole-tree thinning with repeated nitrogen fertilization every third year were applied, with plots split for wood-ash treatment. Eighteen years after the treatments, whole-tree thinning that had removed 3.0 +/- 0.2 Mg C/ha in residues had no effect on forest growth, soil carbon and nitrogen stocks or soil chemistry. Both nitrogen fertilization regimes increased biomass growth, but neither one resulted in a significant increase in soil carbon stock. Wood-ash addition increased soil pH and exchangeable base cations, but did not affect carbon stock in biomass or soil. Our long-term data suggest that utilizing harvesting residues for biofuel feedstocks is appropriate in this type of forest. Hence, any nitrogen and wood-ash additions appear unnecessary as compensatory measures for the removal of harvesting residues, but nitrogen can be applied to increase forest growth following thinning

    Ecophysiological variation of transpiration of pine forests: synthesis of new and published results

    No full text
    Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to questions ranging from energy partitioning to ecosystem services, such as primary productivity and water yield. We estimated EC of four pine stands differing in age, and growing on sandy soils. The stands consisted of two wide-ranging conifer species: Pinus taeda and Pinus sylvestris, in temperate and boreal zones, respectively. Combining results from these and published studies on all soil types, we derived an approach to estimate daily EC of pine forests, representing a wide range of conditions from 35 º S to 64 º N latitude. During the growing season and under moist soils, maximum daily EC (ECm) at day-length normalized vapor pressure deficit of 1 kPa (ECm-ref) increased by 0.55 ± 0.02 (mean ± standard error) mm d−1 for each unit increase of leaf area index (L) up to L = ~5, showing no sign of saturation within this range of quickly rising mutual shading. The initial rise of ECm with atmospheric demand was linearly related to ECm-ref. Both relations were unaffected by soil type. Consistent with theoretical prediction, daily EC was sensitive to decreasing soil moisture at an earlier point of relative extractable water in loamy than sandy soils. Our finding facilitates the estimation of daily EC of wide-ranging pine forests using remotely-sensed L and meteorological data. We advocate an assembly of worldwide sap flux database for further evaluation of this approach. This article is protected by copyright
    corecore