277 research outputs found

    Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems

    Full text link
    Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest, which are unfeasible for classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. Particularly, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analog quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles . Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pair-wise quantum correlations to observe the monogamy of entanglement

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    Fulvestrant and the sequential endocrine cascade for advanced breast cancer

    Get PDF
    Following relapse on endocrine therapy for advanced, hormone receptor-positive breast cancer, it is common for patients to experience responses to alternative endocrine agents. Fulvestrant (‘Faslodex’) is a new type of endocrine treatment – an oestrogen receptor (ER) antagonist with no agonist effects. Fulvestrant downregulates cellular levels of the ER resulting in decreased expression of the progesterone receptor. This unique mode of action means that it is important that fulvestrant is placed optimally within the sequence of endocrine therapies to ensure that patients gain maximum benefit. Fulvestrant has shown efficacy when used after progression on tamoxifen or anastrozole in postmenopausal women with advanced breast cancer. After progression on fulvestrant, subsequent endocrine treatments can produce responses in many patients, demonstrating that fulvestrant does not lead to crossresistance with other endocrine therapies. Responses to fulvestrant have also been observed in patients heavily pretreated with prior endocrine therapy. Fulvestrant is a versatile endocrine agent that may be integrated into the therapeutic sequence prior to, or subsequent to, other hormonal therapies, and represents a valuable additional antioestrogen for the treatment of postmenopausal women with advanced breast cancer

    Probing the relaxation towards equilibrium in an isolated strongly correlated 1D Bose gas

    Get PDF
    The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum entropy principle put forward in 1957 by E. T. Jaynes suggests what quantum states one should expect in equilibrium but does not hint as to how closed quantum many-body systems dynamically equilibrate. A number of theoretical and numerical studies accumulate evidence that under specific conditions quantum many-body models can relax to a situation that locally or with respect to certain observables appears as if the entire system had relaxed to a maximum entropy state. In this work, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we are able to prepare the system in a well-known initial state with high fidelity. We then follow the dynamical evolution of the system in terms of quasi-local densities, currents, and coherences. Numerical studies based on the time-dependent density-matrix renormalization group method are in an excellent quantitative agreement with the experimental data. For very long times, all three local observables show a fast relaxation to equilibrium values compatible with those expected for a global maximum entropy state. We find this relaxation of the quasi-local densities and currents to initially follow a power-law with an exponent being significantly larger than for free or hardcore bosons. For intermediate times the system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms based on matrix product states can efficiently keep track of.Comment: 8 pages, 6 figure

    The pathology of familial breast cancer: Immunohistochemistry and molecular analysis

    Get PDF
    Extensive studies of BRCA1- and BRCA2-associated breast tumours have been carried out in the few years since the identification of these familial breast cancer predisposing genes. The morphological studies suggest that BRCA1 tumours differ from BRCA2 tumours and from sporadic breast cancers. Recent progress in immunohistochemistry and molecular biology techniques has enabled in-depth investigation of molecular pathology of these tumours. Studies to date have investigated issues such as steroid hormone receptor expression, mutation status of tumour suppressor genes TP53 and c-erbB2, and expression profiles of cell cycle proteins p21, p27 and cyclin D(1). Despite relative paucity of data, strong evidence of unique biological characteristics of BRCA1-associated breast cancer is accumulating. BRCA1-associated tumours appear to show an increased frequency of TP53 mutations, frequent p53 protein stabilization and absence of imunoreactivity for steroid hormone receptors. Further studies of larger number of samples of both BRCA1- and BRCA2-associated tumours are necessary to clarify and confirm these observations

    Activation of Estrogen Receptor-α by E2 or EGF Induces Temporally Distinct Patterns of Large-Scale Chromatin Modification and mRNA Transcription

    Get PDF
    Estrogen receptor-α (ER) transcription function is regulated in a ligand-dependent (e.g., estradiol, E2) or ligand-independent (e.g., growth factors) manner. Our laboratory seeks to understand these two modes of action. Using a cell line that contains a visible prolactin enhancer/promoter array (PRL-HeLa) regulated by ER, we analyzed ER response to E2 and EGF by quantifying image-based results. Data show differential recruitment of GFP-ER to the array, with the AF1 domain playing a vital role in EGF-mediated responsiveness. Temporal analyses of large-scale chromatin dynamics, and accumulation of array-localized reporter mRNA over 24 hours showed that the EGF response consists of a single pulse of reporter mRNA accumulation concomitant with transient increase in array decondensation. Estradiol induced a novel cyclical pattern of mRNA accumulation with a sustained increase in array decondensation. Collectively, our work shows that there is a stimuli-specific pattern of large-scale chromatin modification and transcript levels by ER

    Lifestyle and diet in relation to risk of type 2 diabetes in Vietnam: a hospital-based case-control study.

    Get PDF
    BACKGROUND: Lifestyle and diet are important determinants of type 2 diabetes (T2D). Their impact on T2D can be evaluated using clinical and epidemiological approaches. Randomised controlled trials are the most rigorous design but expensive to conduct, whereas prospective cohort studies are time-consuming and less powerful for populations with a low incidence of the disease. Case-control studies are considered appropriate in resource-limited settings. A hospital-based case-control study protocol has been developed to investigate the role of lifestyle and dietary factors in T2D aetiology for adults in Vietnam. METHODS: A total of 1100 patients aged 40-65 years (550 T2D cases and 550 controls) will be recruited from a tertiary hospital in Hanoi, the capital city of Vietnam. Cases and controls will be frequency-matched on age (±3 years), gender, and residential location. T2D will be diagnosed according to the 2006 World Health Organisation criteria. Habitual physical activity will be assessed by the Vietnamese version of the International Physical Activity Questionnaire-Short Form. Food and beverage consumption will be ascertained using a Validated Food Frequency Questionnaire, specifically developed for the Vietnamese population. Information on demographic and other personal characteristics will be collected, together with anthropometric and blood pressure measurements. Descriptive statistics and unconditional logistic regression analyses will be performed to examine factors associated with the T2D prevalence. DISCUSSION: The proposed study will elucidate the role of lifestyle and diet in T2D prevalence among Vietnamese adults. Findings concerning pertinent factors will provide epidemiological evidence for the development of focused interventions, and contribute to the formulation of national policies to prevent and control T2D in Vietnam

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    TargetMine, an Integrated Data Warehouse for Candidate Gene Prioritisation and Target Discovery

    Get PDF
    Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/
    corecore