238 research outputs found

    Quantitative estimates of fish abundance from boat electrofishing

    Get PDF
    Multiple removals by boat electro-fishing were used to estimate fish populations in non-wadeable habitats in New Zealand lakes and rivers. Mean capture probability was 0.47±h0.10 (± 95% CI) from 35 population estimates made with 2-7 successive removals. The relationship between the population estimate from the Zippin method (Y)and the number of fish caught in the first removal (X) was significant (adjusted r2=0.84, P<0.001; Figure 2). The least-squares regression was Y = 1.55X 1.23. Mean density ± 95% confidence interval for 13 fishing occasions was 30±27 fish 100 m- 2. Mean biomass of fish for sites was 78±39 g m-2 (range 29 to 245 g m-2). Koi carp comprised the largest proportion of the fish biomass wherever they were present. The high biomasses of koi carp estimated in these results (mean 56±33 g m-2) suggest that they can reach problematic abundances in New Zealand. Bioniass of spawning koi carp can exceed 400 g m-2

    Age composition, growth, and reproduction of koi carp (Cyprinus carpio L.) in the lower Waikato, New Zealand

    Get PDF
    A total of 566 koi carp (Cyprinus carpio) from the lower Waikato region were aged from scales and opercular bones, and growth was modelled with the von Bertalanffy growth function. There was no difference in growth rate between male and female carp. Growth of koi carp between zero and 3 years of age was lower than that of common carp in Europe and Australia. However, after 5 years of age the growth of koi carp was higher than that of common carp in Europe, but still below that of carp in Australia. Males rarely lived in excess of 8 years, whereas females lived to 12 years. Mean total fecundity calculated from 44 running-ripe females was 299 000 oocytes (±195 600 SD) (range 29 800–771 000). Relative fecundity ranged from 19 300 to 216 000 oocytes kg–1 total body weight, with a mean of 97 200 (±35 000 SD) oocytes kg–1. Feral koi carp in the Waikato are capable of multiple spawnings within their lifetimes. Within a spawning season, Waikato populations of feral koi carp contained females that spawned once, and females that had the potential to have spawned repeatedly. Female gonadosomatic index (GSI) varied with season and was negatively related to water temperature

    X-Ray Flashes in Recurrent Novae: M31N 2008-12a and the Implications of the Swift Non-detection

    Full text link
    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M_sun and for two recurrence periods of 0.5 and 1 years. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hours (0.6 days) among the four cases is obtained for the 1.385 M_sun WD with one year recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 year recurrence period), which resulted in the non-detection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies and its detection is essentially important to understand the pre-optical-maximum phase. We encourage further observations.Comment: 12 pages, including 9 figures and 3 tables. To appear in the Astrophysical Journa

    Effects of habitat composition and landscape structure on worker foraging distances of five bumblebee species

    Get PDF
    Bumblebees (Bombus spp.) are important pollinators of both crops and wild flowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumblebees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics and fine resolution remote sensing to estimate the locations of wild bumblebee nests and to infer foraging distances across a 20 km2 agricultural landscape in southern England. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius and B. ruderatus exhibited significantly greater mean foraging distances (551 m, 536 m, 501 m, respectively) than B. hortorum and B. pascuorum (336 m, 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that favourable landscape composition and configuration has the potential to minimise foraging distances across a range of bumblebee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumblebees and enhancing crop pollination services

    Truly reconciled? A dyadic analysis of post-conflict social reintegration in Northern Uganda

    Get PDF
    In the aftermath of civil war or violent internal conflict, one of the key peacebuilding challenges is the reconciliation of former enemies who are members of the same small-scale societies. A failure of social reintegration may contribute to what is known as a conflict trap. To detect lingering hostile attitudes among a community’s various factions is crucial, but the approaches adopted in previous studies tend to focus on the impact of conflict on one or other aggregated indicator of social cohesion rather than on how violence-affected individuals regard and act towards their fellow community members. Here we demonstrate the value of concentrating on this latter dyadic component of social interactions and we use behavioural experiments and a social tie survey to assess, in an appropriately disaggregated manner, social cohesion in a post-conflict setting in northern Uganda. Whereas in self-reported surveys, ex-combatants appear to be well-connected, active members of their communities, the experiments unveil the continued reluctance of other community members to share or cooperate with them; fewer resources are committed to ex-combatants than to others, which is statistically significant. The dyadic nature of our analysis allows us to detect which groups are more prone to discriminate against ex-combatants, which may help facilitate targeted interventions

    Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe

    Get PDF
    Allergic rhinitis is an inflammation in the nose caused by overreaction of the immune system to allergens in the air. Managing allergic rhinitis symptoms is challenging and requires timely intervention. The following are major questions often posed by those with allergic rhinitis: How should I prepare for the forthcoming season? How will the season's severity develop over the years? No country yet provides clear guidance addressing these questions. We propose two previously unexplored approaches for forecasting the severity of the grass pollen season on the basis of statistical and mechanistic models. The results suggest annual severity is largely governed by preseasonal meteorological conditions. The mechanistic model suggests climate change will increase the season severity by up to 60%, in line with experimental chamber studies. These models can be used as forecasting tools for advising individuals with hay fever and health care professionals how to prepare for the grass pollen season

    Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData and Code Availability Statement: Data collected using qPCR is archived and on NERC EIDC [https://doi.org/10.5285/28208be4-0163-45e6-912c-2db205126925]. Standard pollen monitoring ‘count’ data were sourced from the MEDMI database, with the exception of data from Bangor which were produced as part of the present study and are available on request. Prescribing datasets are publicly available, as are weather, air pollution, deprivation (IMD) and rural-urban category data. Hospital episode statistics (HES) datasets are sensitive, individual-level health data, which are subject to strict privacy regulations and are not publicly available. The study did not generate any unique codeGrass (Poaceae) pollen is the most important outdoor aeroallergen, exacerbating a range of respiratory conditions, including allergic asthma and rhinitis (‘hay fever’). Understanding the relationships between respiratory diseases and airborne grass pollen with view to improving forecasting has broad public health and socioeconomic relevance. It is estimated that there are over 400 million people with allergic rhinitis and over 300 million with asthma, globally, often comorbidly . In the UK, allergic asthma has an annual cost of around US$ 2.8 billion (2017). The relative contributions of the >11,000 (worldwide) grass species to respiratory health have been unresolved, as grass pollen cannot be readily discriminated using standard microscopy. Instead, here we used novel environmental DNA (eDNA) sampling and quantitative PCR (qPCR) , to measure the relative abundances of airborne pollen from common grass species, during two grass pollen seasons (2016 and 2017), across the UK. We quantitatively demonstrate discrete spatiotemporal patterns in airborne grass pollen assemblages. Using a series of generalised additive models (GAMs), we explore the relationship between the incidences of airborne pollen and severe asthma exacerbations (sub-weekly) and prescribing rates of drugs for respiratory allergies (monthly). Our results indicate that a subset of grass species may have disproportionate influence on these population-scale respiratory health responses during peak grass pollen concentrations. The work demonstrates the need for sensitive and detailed biomonitoring of harmful aeroallergens in order to investigate and mitigate their impacts on human health.Natural Environment Research Council (NERC)National Institute for Health Research (NIHR)Public Health EnglandUniversity of ExeterUniversity College LondonMet Offic

    Reflections on a crisis: political disenchantment, moral desolation, and political integrity

    Get PDF
    Declining levels of political trust and voter turnout, the shift towards populist politics marked by appeals to ‘the people’ and a rejection of ‘politics-as-usual’, are just some of the commonly cited manifestations of our culture of political disaffection. Democratic politics, it is argued, is in crisis. Whilst considerable energy has been expended on the task of lamenting the status of our politics and pondering over recommendations to tackle this perceived crisis, amid this raft of complaints and solutions lurks confusion. This paper seeks to explore the neglected question of what the precise nature of the crisis with which we are confronted involves, and, in so doing, to go some way towards untangling our confusion. Taking my cue from Machiavelli and his value-pluralist heirs, I argue that there is a rift between a morally admirable and a virtuous political life. Failure to appreciate this possibility causes narrations of crisis to misconstrue the moral messiness of politics in ways that lead us to misunderstand how we should respond to disenchantment. Specifically, I suggest that: (i) we think that there is a moral crisis in politics because we have an unsatisfactorily idealistic understanding of political integrity in the first place; and (ii) it is a mistake to imagine that the moral purification of politics is possible or desirable. Put simply, our crisis is not moral per se but primarily philosophical in nature: it relates to the very concepts we employ—the qualities of character and context we presuppose whilst pondering over political integrity
    corecore