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Abstract 

Multiple removals by boat electro-fishing were used to estimate fish populations in non-wadeable 

habitats in New Zealand lakes and rivers. Mean capture probability was 0.47h0.10 (5  95% CI) from 

35 population estimates made with 2-7 successive removals. The relationship between the 

population estimate from the Zippin method (Y) and the number of fish caught in the first removal 

(X) was significant (adjusted r2=0.84, P<0.001; Figure 2). The least-squares regression was Y = 

1.55 p3. Mean density h 95% confidence interval for 13 fishing occasions was 30h27 fish 100 m- 

2. Mean biomass of fish for sites was 78h39 g m-2 (range 29 to 245 g m-2). Koi carp comprised the 

largest proportion of the fish biomass wherever they were present. The high biomasses of koi carp 

estimated in these results (mean 56533 g m") suggest that they can reach problematic abundances 

in New Zealand. Bioniass of spawning koi carp can exceed 400 g m-?. 

Introduction 

Passive capture techniques such as gill and trap nets have been used to capture a wide variety of fish 

species in shallow New Zealand lakes (e.g. Hayes, 1989), but they have the limitation that the area 

sampled is generally unknown. Thus any inferences that can be made about fish abundance relate 

only to relative abundance and not to estimates of absolute abundance. The objective of our study 

was to make quantitative estimates of fish abundance in non-wadeable habitats with removal 

population estimates from boat electro-fishing. Further, we sought to establish the relationship 

between the first removal and the total population estimate. 

Previous studies have used multiple-removal boat electro-fishing (e.g., Meador 2005), and Mitro 

and Zale (2000) compared first removals to multiple removal population estimates. Jowett and 
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Richardson (19911) il\c~.i clcc~:1-fishing to compare first-removal catches to population estimates in 

wadeable streams and rivers. Bayley and Austen (2002) estimated capture efficiency from 

comparisons of boat electro-fishing and independent population estimates by a combination of 

toxicants, explosives, and draining. One study used multiple removal boat fishing to estimate fish 

bion~ass directly, without first calculating density (Thompson et al., 2002). 

Methods 

We fished with a 4.5-m long electro-fishing boat. The boat had a rigid aluminium pontoon hull with 

a 2-m beam, and was fitted with a 6-kilowatt Honda-powered custom-wound generator and a 5- 

kilowatt gas-powered pulsator (Smith-Root, Inc., model 5.0 GPP); two anode poles created the 

fishing field at the bow. The pulsator emitted pulses of direct current at a frequency of 60 pulses per 

second, and the power output was normally 2-4 amps root mean square. The two adjustable anode 

arrays each had l-m long stainless steel rat tails that dangled in the water, and the boat hull itself 

acted as the cathode. We estimated the length and area fished with a boat-mounted global 

positioning system (Lowrance ~ l o b a l ~ a ~ ' "  2400). We assumed from the reactions of fish that were 

observed to undergo forced swimming at the surface that the effective fishing width of the field was 

4 m, and we used this width to estimate the area fished. 

To estimate fish population size, we tallied the fish from each of 2-7 successive removals 

separately, fishing without replacement. We calculated the population size and capture probability 

for two ren~ovals using the Zippin method (e.g. Hicks 2003). For three removals or more, we used 

the programme CAPTURE (White et al., 1982). Length fished ranged from 53 to 987 m (mean 3 12 

m), and area ranged from 2 12 to 3948 m2 (mean 1578 m2). The study sites were all located in the 

North Island of New Zealand (Figure l). 

Results 

We caught five native and seven introduced fish species at the eight sites fished (Table 1). In 

general, we caught all species present at any site on the first removal, and species richness did not 

increase with subsequent removals. Mean capture probability calculated from 35 population 

estimates was 0.47*0.10 (* 95% CI). Capture probabilities varied with fish species; koi carp 

generally had the highest capture probabilities (generally >OS). 

The relationship between the population estimate from the Zippin method (Y) and the number of 

fish caught in the first removal (X) was significant (adjusted v2=0.84, N=35, P<0.001; Fig. 2). The 

least-squares regression was 

Y - 1.55 X'.23 equation l .  

Mean density * 95% confidence interval for 13 fishing occasions was 30h27 fish 100 m-2. Mean 

biomass of fish for sites was 78*39 g m-2 (range 29 to 2 

3657 g, which implies a non-spawning biomass range fo 

g n ~ . ~ ) .  
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Koi carp reached huge biomasses in the shallow lakes and wetlands of the Waikato region during 

spawning. In Lake Whangape in September 2003, we caught 24 koi carp in 696 m2 of edge habitat 

in l l mins. Total fish weight was 87 kg. Estimating total abundance from this single-pass removal 

with equation 1 suggests that the population estimate was 77 fish, or 11.1 fish 100 m-2. As mean 

individual fish weight was 3645 g, this estimated density implies that the true biomass could be 403 

g m-?, or 4030 kg ha-'. 

Seasonal abundance of koi carp in the outlet of the Kimihia Wetland was low in October, probably 

as a result of movement to spawning sites in August or September (Figure 3). Water clarity was 

generally poor; black disc (Davies-Colley 1988) ranged from 0.2- 1.9 m. 

Conclusion 

Capture probabilities that we estimated from boat electro-fishing (mean 0.47k0.10, 95% CI) were 

somewhat lower than those for native fish species and brown trout in wadeable streams (range 0.54- 

0.86; Jowett and Richardson 1996). Water clarity was often poor in our study, which may account 

for our lower capture probabilities. In addition, water depth was 1-3 m, and fish that did not float on 

immobilisation may have remained unseen. 

In the USA, catchability has been estimated by comparison of boat electro-fishing with independent 

population estimates by toxicants, explosives, and draining. The proportion of fish caught by 

electro-fishing was species and size dependent, with maximum catchability for each species about 

0.03 to 0.08 in the presence of macrophytes, and 0.08 and 0.16 without macrophytes (Bayley and 

Austen 2002). Whether our capture probability truly represents catchability, in the sense of Bayley 

and Austen (2002), remains to be tested. We intend to combine mark-recapture with removal 
methods to carry out this test. 

Where numerous fish species are present, multiple removal boat electro-fishing can be useful to 

fully characterise fish assemblages (Meador, 2005). The effectiveness of fishing was greatest when 

species richness was low (about 10 species), as was the case in our study, where a maximum of 8 

species were caught at any site. 

In our boat electro-fishing, the estimated population increased dramatically as number caught in the 

first removal increases. When X = 5, equation 1 predicts that Y = 11 (2.2 times the number caught in 

the first removal). However, when X = 500, Y = 3236, or about 6.5 times the first removal. 
Catchability of largemouth bass (Micropterus salmoides) sampled with boat electro-fishing also 

declined with increasing density (McInerny and Cross 2002). In wadeable habitats, this problem is 

less severe. The true population density (Y) has been estimated as 

Y = 1.96 X'.028 equation 2, 

where X = number of fish caught in the first removal for a number of native and introduced New 

Zealand fish species. This means that about half the fish present will be caught on the first pass 
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almost regardless of the magnitude of the first removal. Reworking the results of Hayes and Baird 

(1 994) for age 0 brown trout in wadeable streams yielded a remarkably similar result: 

Y = 1.93 X0955 equation 3. 

Though we have yet to establish the ecological effects of koi carp in the Waikato, the high 

biomasses estimated in these results suggest that koi carp can reach problematic abundances in New 

Zealand. At the biomasses that we have estimated, koi are likely to compete with other benthic fish 

such as eels, bullies, and catfish, and to reduce water quality significantly. 
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Table 1. Density and biomass of fish in lakes and rivers of the North Island, New Zealand, estimated from multiple removal boat electro-fishing 

CC'? L 0 
2 G E - . s q 3  2 g.2 2 Length Area Density 

~ 1 m z ~ g $ z  N fished fished (fish 100 Biomass 

Kimihia Stream, Waikato River 29 Jan 2004 • • • 2 183 1281 21 175 
Kimihia Stream, Waikato River 5 May 2004 • 4 167 1169 17 62 
Kimihia Stream, Waikato River 8 Oct 2004 • 3 173 1730 7 83 
Kimihia Stream, Waikato River 23 Jun2005 3 196 1427 97 3 3 
Lake Waiwhakareke, Waikato, site 1 13 May 2005 • 4 53 212 154 228 
Lake Waiwhakareke, Waikato, site 2 13 May 2005 • 2 987 3948 2 17 
Mokoia Pond, southern Taranaki 9 June 2005 • 7 215 951 2 62 
Muddy Creek, Hawke Bay 6 Nov 2003 • 2 370 2959 2 125 
Waikato River near Kimihia Stream 10 May 2004 • • 3 264 1056 26 4 1 
Waikato River near Kimihia Stream 8 Oct 2004 • 2 410 1640 5 99 
Waikato River, Pukete 24 May 2005 • 4 199 796 16 35 
Waikato River, Pukete 26 May 2005 5 199 796 33 29 

Species identification Native species: common smelt (Retropinna retropinna), common bullies (Gobiomorphus cotidianus), grey mullet (Mugil cephalus), 

inanga (Galaxias maculatus), shortfin eel (Anguilla australis). Introduced species: catfish (Ameiurus nebulosus), goldfish (Carassius auratz(s), grass carp 

(Ctenopharyngodon idella), koi carp (Cyprinus carpio), mosquito fish (Gambusia afinis), rainbow trout (Oncorhynchus mykiss), rudd (Scardinius 

erythrophthalmus). 
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Figure 1. Location of study sites in the North Island of New Zealand 
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