25 research outputs found

    Spiral-like star-forming patterns in CALIFA early-type galaxies

    Full text link
    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 < {\mu}r_r mag/arcsec2^2 < 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified i+, is a two-radial-zone structure, with the inner zone that displays faint (EW(H\alpha)\simeq1{\AA}) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3{\AA}<EW(H\alpha)<~20{\AA}) HII-region characteristics. This spatial segregation of nebular emission in two physically distinct concentric zones calls for an examination of aperture effects in studies of type i+ ETGs with single-fiber spectroscopic data.Comment: Accepted to A&A, 5 pages, 1 figur

    Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA

    Get PDF
    Integral field spectroscopy studies based on CALIFA data have recently revealed the presence of ongoing low-level star formation (SF) in the periphery of ~10% of local early-type galaxies (ETGs), witnessing a still ongoing inside-out galaxy growth process. A distinctive property of the nebular component in these ETGs, classified i+, is a two-radial-zone structure, with the inner zone displaying LINER emission with a H\alpha equivalent width EW~1{\AA}, and the outer one (3{\AA}<EW<~20{\AA}) showing HII-region characteristics. Using CALIFA IFS data, we empirically demonstrate that the confinement of nebular emission to the galaxy periphery leads to a strong aperture (or, redshift) bias in spectroscopic single-fiber studies of type i+ ETGs: At low redshift (<~0.45), SDSS spectroscopy is restricted to the inner (SF-devoid LINER) zone, thereby leading to their erroneous classification as "retired" galaxies (systems lacking SF and whose faint emission is powered by pAGB stars). Only at higher z's the SDSS aperture can encompass the outer SF zone, permitting their unbiased classification as "composite SF/LINER". We also demonstrate that the principal effect of a decreasing aperture on the classification of i+ ETGs via standard BPT emission-line ratios consists in a monotonic up-right shift precisely along the upper-right wing of the "seagull" distribution. Motivated by these insights, we also investigate theoretically these biases in aperture-limited studies of inside-out growing galaxies as a function of z. To this end, we devise a simple model, which involves an outwardly propagating SF process, that reproduces the radial extent and two-zone EW distribution of i+ ETGs. By simulating on this model the spectroscopic SDSS aperture, we find that SDSS studies at z<~1 are progressively restricted to the inner LINER-zone, and miss an increasingly large portion of the H\alpha-emitting periphery.Comment: Accepted to A&A, 6 pages, 4 figure

    CALIFA : a diameter-selected sample for an integral field spectroscopy galaxy survey

    Get PDF
    JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 M-r > -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses <10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.Peer reviewe

    CALIFA, the Calar Alto Legacy Integral Field Area survey III. Second public data release

    Get PDF
    CALIFA is the first legacy survey being performed at Calar Alto. The CALIFA collaboration would like to thank the IAA-CSIC and MPIA-MPG as major partners of the observatory, and CAHA itself, for the unique access to telescope time and support in manpower and infrastructures. The CALIFA collaboration thanks also the CAHA staff for the dedication to this project. R.G.B., R.G.D., and E.P. are supported by the Spanish Ministerio de Ciencia e Innovacion under grant AYA2010-15081. S.Z. is supported by the EU Marie Curie Integration Grant "SteMaGE" Nr. PCIG12-GA-2012-326466 (Call Identifier: FP7-PEOPLE-2012 CIG). J.F.B. acknowledges support from grants AYA2010-21322-C03-02 and AIB-2010-DE-00227 from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement number 289313. Support for L.G. is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, M.A.S.L.G. also acknowledges support by CONICYT through FONDECYT grant 3140566. A.G. acknowledges support from the FP7/2007-2013 under grant agreement n. 267251 (AstroFIt). J.M.G. acknowledges support from the Fundacao para a Ciencia e a Tecnologia (FCT) through the Fellowship SFRH/BPD/66958/2009 from FCT (Portugal) and research grant PTDC/FIS-AST/3214/2012. RAM was funded by the Spanish programme of International Campus of Excellence Moncloa (CEI). J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). I.M., J.M. and A.d.O. acknowledge the support by the projects AYA2010-15196 from the Spanish Ministerio de Ciencia e Innovacion and TIC 114 and PO08-TIC-3531 from Junta de Andalucia. AMI acknowledges support from Agence Nationale de la Recherche through the STILISM project (ANR-12-BS05-0016-02). M.M. acknowledges financial support from AYA2010-21887-C04-02 from the Ministerio de Economia y Competitividad. P.P. is supported by an FCT Investigador 2013 Contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). P.P. acknowledges support by FCT under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FIS-AST/3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE). T.R.L. thanks the support of the Spanish Ministerio de Educacion, Cultura y Deporte by means of the FPU fellowship. PSB acknowledges support from the Ramon y Cajal program, grant ATA2010-21322-C03-02 from the Spanish Ministry of Economy and Competitiveness (MINECO). C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. V.W. acknowledges support from the European Research Council Starting Grant (SEDMorph P.I. V. Wild) and European Career Re-integration Grant (Phiz-Ev P.I.V. Wild). Y.A. acknowledges financial support from the Ramon y Cajal programme (RyC-2011-09461) and project AYA2013-47742-C4-3-P, both managed by the Ministerio de Economia y Competitividad, as well as the "Study of Emission-Line Galaxies with Integral-Field Spectroscopy" (SELGIFS) programme, funded by the EU (FP7-PEOPLE-2013-IRSES-612701) within the Marie-Sklodowska-Curie Actions scheme. We thank the referee David Wilman for very useful comments that improved the presentation of the paper.This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a lowresolution V500 setup covering the wavelength range 3745–7500 Å with a spectral resolution of 6.0 Å (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650–4840 Å with a spectral resolution of 2.3 Å (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color–magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improved spectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 200 : 4. In total, the second data release contains over 1.5 million spectra.Instituto de Salud Carlos III Spanish Government AYA2010-15081 AYA2010-15196European Union (EU) PCIG12-GA-2012-326466Spanish Ministry of Economy and Competitiveness (MINECO) AYA2010-21322-C03-02 AIB-2010-DE-00227FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA 289313Ministry of Economy, Development, and Tourism's Millennium Science Initiative IC12009Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 3140566Fundacao para a Ciencia e a Tecnologia (FCT) from FCT (Portugal) SFRH/BPD/66958/2009Spanish programme of International Campus of Excellence Moncloa (CEI)European Research Council (ERC)Junta de Andalucia TIC 114 PO08-TIC-3531French National Research Agency (ANR) ANR-12-BS05-0016-02Spanish Government AYA2010-21887-C04-02FCT Investigador Contract - FCT/MCTES (Portugal)European Commission Joint Research Centre European Social Fund (ESF)FCT - FCT-MEC (PIDDAC) FCOMP-01-0124-FEDER-029170 FCT PTDC/FIS-AST/3214/2012European Union (EU)Spanish Ministerio de Educacion, Cultura y Deporte by FPURamon y Cajal program from the Spanish Ministry of Economy and Competitiveness (MINECO) ATA2010-21322-C03-02European Union (EU) 303912European Career Re-integration GrantSpanish Government RyC-2011-09461 AYA2013-47742-C4-3-PEuropean Union (EU) FP7-PEOPLE-2013-IRSES-612701PTDC/FIS-AST/3214/2012Science & Technology Facilities Council (STFC) ST/K000985/

    Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA

    Get PDF
    Integral field spectroscopy (IFS) studies based on CALIFA survey data have recently revealed ongoing low-level star formation (SF) in the periphery of a small fraction (~10%) of local early-type galaxies (ETGs), witnessing a still ongoing inside-out galaxy growth process. A distinctive property of the nebular component in these ETGs, classified i+, is a structure with two radial zones, the inner of which displays LINER emission with a Hα equivalent width EW(Hα) ≃ 1 Å, the outer (3 Å < EW(Hα) ≲ 20 Å) Hɪɪ-region characteristics. Using CALIFA IFS data, we empirically demonstrate that the confinement of nebular emission to the galaxy periphery leads to a strong aperture (or, correspondingly, redshift) bias in spectroscopic single-fiber studies of type i+ ETGs: at low redshift (z ≲ 0.45), SDSS spectroscopy is restricted to the inner (SF-devoid LINER) zone, which causes the galaxies to be erroneously classified as "retired", that is, systems entirely lacking SF, and whose faint nebular emissionis solely powered by the post-AGB stellar component. The SDSS aperture progressively encompasses the outer SF zone only at higher z, at which the galaxies are unambiguously classified as "composite SF/LINER". We also empirically demonstrate that the principal effect of a decreasing spectroscopic aperture on the classification of i+ ETGs through standard [Nɪɪ]/Hα vs. [Oɪɪɪ]/Hβ emission-line (BPT) ratios consists of a monotonic shift upward and to the right precisely along the upper right wing of the "seagull" distribution on the BPT plane, that is, along the pathway connecting composite SF/Hɪɪ galaxies with AGN/LINERs. Motivated by these observational insights, we also investigate theoretically observational biases in aperture-limited studies of inside-out growing galaxies as a function of z. To this end, we devise a simple 1D model that involves an outward-propagating exponentially decreasing SF process since z ~ 10 and reproduces the radial extent and two-zone EW(Hα) distribution of local i+ ETGs. By simulating the 3″ spectroscopic SDSS aperture in this model, we find that SDSS studies at z ≲ 1 are progressively restricted to the inner (SF-devoid LINER) zone and miss an increasingly larger portion of the Hα-emitting periphery. This leads to the incorrect spectroscopic classification of these inside-out assembling galaxies as retired ETG/LINERs and also to a severe underestimation of their total star formation rate (SFR) in a manner inversely related to z. More specifically, the SFR inferred from the Hα luminosity registered within the SDSS fiber is reduced by 50% at z ~ 0.86, reaching only 0.1% of its integral value at z = 0.1. We argue that the aperture-driven biases described above pertain to any morphological analog of i+ ETGs (e.g., SF-quiescent bulges within star-forming disks), regardless of whether it is viewed from the perspective of inside-out growth or inside-out SF quenching, and might be of considerable relevance to galaxy taxonomy and studies of the cosmic SFR density as a function of z.6 page(s

    CALIFA, the Calar Alto Legacy Integral Field Area survey

    Get PDF
    <p>We present the first public data release (DR1) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005 <z <0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. The galaxies in DR1 already cover a wide range of properties in color-magnitude space, morphological type, stellar mass, and gas ionization conditions. This offers the potential to tackle a variety of open questions in galaxy evolution using spatially resolved spectroscopy. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the nominal wavelength range 3745-7500 angstrom with a spectral resolution of 6.0 angstrom (FWHM), and (ii) a medium-resolution V1200 setup covering the nominal wavelength range 3650-4840 angstrom with a spectral resolution of 2.3 angstrom (FWHM). We present the characteristics and data structure of the CALIFA datasets that should be taken into account for scientific exploitation of the data, in particular the effects of vignetting, bad pixels and spatially correlated noise. The data quality test for all 100 galaxies showed that we reach a median limiting continuum sensitivity of 1.0 x 10(-18) erg s(-1) cm(-2) angstrom(-1) arcsec(-2) at 5635 angstrom and 2.2 x 10(-18) erg s(-1) cm(-2) angstrom(-1) arcsec(-2) at 4500 angstrom for the V500 and V1200 setup respectively, which corresponds to limiting r and g band surface brightnesses of 23.6 mag arcsec(-2) and 23.4 mag arcsec(-2), or an unresolved emission-line flux detection limit of roughly 1 x 10(-17) erg s(-1) cm(-2) arcsec(-2) and 0.6 x 10(-17) erg s(-1) cm(-2) arcsec(-2), respectively. The median spatial resolution is 3 ''.7, and the absolute spectrophotometric calibration is better than 15% (1 sigma). We also describe the available interfaces and tools that allow easy access to this first public CALIFA data at http://califa.caha.es/DR1.</p>

    CALIFA:a diameter-selected sample for an integral field spectroscopy galaxy survey

    No full text
    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 &lt;z &lt;0 : 03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 &gt; M-r &gt; -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses &lt;10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form &lt;10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.</p
    corecore