30 research outputs found
Coherent control of macroscopic quantum states in a single-Cooper-pair box
A small superconducting electrode (a single-Cooper-pair box) connected to a
reservoir via a Josephson junction constitutes an artificial two-level system,
in which two charge states that differ by 2e are coupled by tunneling of Cooper
pairs. Despite its macroscopic nature involving a large number of electrons,
the two-level system shows coherent superposition of the two charge states, and
has been suggested as a candidate for a qubit, i.e. a basic component of a
quantum computer. Here we report on time-domain observation of the coherent
quantum-state evolution in the two-level system by applying a short voltage
pulse that modifies the energies of the two levels nonadiabatically to control
the coherent evolution. The resulting state was probed by a tunneling current
through an additional probe junction. Our results demonstrate coherent
operation and measurement of a quantum state of a single two-level system, i.e.
a qubit, in a solid-state electronic device.Comment: 4 pages, 4 figures; to be published in Natur
Coherent Electron-Phonon Coupling in Tailored Quantum Systems
The coupling between a two-level system and its environment leads to
decoherence. Within the context of coherent manipulation of electronic or
quasiparticle states in nanostructures, it is crucial to understand the sources
of decoherence. Here, we study the effect of electron-phonon coupling in a
graphene and an InAs nanowire double quantum dot. Our measurements reveal
oscillations of the double quantum dot current periodic in energy detuning
between the two levels. These periodic peaks are more pronounced in the
nanowire than in graphene, and disappear when the temperature is increased. We
attribute the oscillations to an interference effect between two alternative
inelastic decay paths involving acoustic phonons present in these materials.
This interpretation predicts the oscillations to wash out when temperature is
increased, as observed experimentally.Comment: 11 pages, 4 figure
Coupling molecular spin states by photon-assisted tunneling
Artificial molecules containing just one or two electrons provide a powerful
platform for studies of orbital and spin quantum dynamics in nanoscale devices.
A well-known example of these dynamics is tunneling of electrons between two
coupled quantum dots triggered by microwave irradiation. So far, these
tunneling processes have been treated as electric dipole-allowed
spin-conserving events. Here we report that microwaves can also excite
tunneling transitions between states with different spin. In this work, the
dominant mechanism responsible for violation of spin conservation is the
spin-orbit interaction. These transitions make it possible to perform detailed
microwave spectroscopy of the molecular spin states of an artificial hydrogen
molecule and open up the possibility of realizing full quantum control of a two
spin system via microwave excitation.Comment: 13 pages, 9 figure
Electron Transport through T-Shaped Double-Dots System
Correlation effects on electron transport through a system of T-shaped
double-dots are investigated, for which only one of the dots is directly
connected to the leads. We evaluate the local density of states and the
conductance by means of the non-crossing approximation at finite temperatures
as well as the slave-boson mean field approximation at zero temperature. It is
found that the dot which is not directly connected to the leads considerably
influences the conductance, making its behavior quite different from the case
of a single-dot system. In particular, we find a novel phenomenon in the Kondo
regime with a small inter-dot coupling, i.e.
Fano-like suppression of the Kondo-mediated conductance, when two dot levels
coincide with each other energetically.Comment: 6 pages,7 figure
Ipsilateral common iliac artery plus femoral artery clamping for inducing sciatic nerve ischemia/reperfusion injury in rats: a reliable and simple method
The aim of this study was to develop a practical model of sciatic ischemia reperfusion (I/R) injury producing serious neurologic deficits and being technically feasible compared with the current time consuming or ineffective models. Thirty rats were divided into 6 groups (n = 5). Animal were anesthetized by using ketamine (50 mg/kg) and xylazine (4 mg/kg). Experimental groups included a sham-operated group and five I/R groups with different reperfusion time intervals (0 h, 3 h, 1 d, 4 d, 7 d). In I/R groups, the right common iliac artery and the right femoral artery were clamped for 3 hrs. Sham-operated animals underwent only laparotomy without induction of ischemia. Just before euthanasia, behavioral scores (based on gait, grasp, paw position, and pinch sensitivity) were obtained and then sciatic nerves were removed for light-microscopy studies (for ischemic fiber degeneration (IFD) and edema). Behavioral score deteriorated among the ischemic groups compared with the control group (p < 0.01), with maximal behavioral deficit occurring at 4 days of reperfusion. Axonal swelling and IFD were found to happen only after 4 and 7 days, respectively. Our observations led to an easy-to-use but strong enough method for inducing and studying I/R injury in peripheral nerves
Detection of Geometric Phases in Superconducting Nanocircuits
When a quantum mechanical system undergoes an adiabatic cyclic evolution it
acquires a geometrical phase factor in addition to the dynamical one. This
effect has been demonstrated in a variety of microscopic systems. Advances in
nanotechnologies should enable the laws of quantum dynamics to be tested at the
macroscopic level, by providing controllable artificial two-level systems (for
example, in quantum dots and superconducting devices). Here we propose an
experimental method to detect geometric phases in a superconducting device. The
setup is a Josephson junction nanocircuit consisting of a superconducting
electron box. We discuss how interferometry based on geometrical phases may be
realized, and show how the effect may applied to the design of gates for
quantum computation.Comment: 12 page
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
Rare-earth solid-state qubits
Quantum bits (qubits) are the basic building blocks of any quantum computer.
Superconducting qubits have been created with a 'top-down' approach that
integrates superconducting devices into macroscopic electrical circuits [1-3],
whereas electron-spin qubits have been demonstrated in quantum dots [4-6]. The
phase coherence time (Tau2) and the single qubit figure of merit (QM) of
superconducting and electron-spin qubits are similar -- Tau2 ~ microseconds and
QM ~10-1000 below 100mK -- and it should be possible to scale-up these systems,
which is essential for the development of any useful quantum computer.
Bottom-up approaches based on dilute ensembles of spins have achieved much
larger values of tau2 (up to tens of ms) [7, 8], but these systems cannot be
scaled up, although some proposals for qubits based on 2D nanostructures should
be scalable [9-11]. Here we report that a new family of spin qubits based on
rare-earth ions demonstrates values of Tau2 (~ 50microseconds) and QM (~1400)
at 2.5 K, which suggests that rare-earth qubits may, in principle, be suitable
for scalable quantum information processing at 4He temperatures
Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy
Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe
Global variation in anastomosis and end colostomy formation following left-sided colorectal resection
Background
End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection.
Methods
This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model.
Results
In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001).
Conclusion
Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone