69 research outputs found

    Evidence for Changes in Subsurface Circulation in the Late Eocene Equatorial Pacific from Radiolarian-Bound Nitrogen Isotope Values

    Get PDF
    Microfossil-bound organic matter represents an important archive of surface ocean environmental information. Sedimentary nitrogen (N) isotope reconstructions of surface nitrate consumption and nitrogen source changes are made using fossil diatom (autotrophs) and planktic foraminiferal (heterotrophs)-bound organic matter with success. However, because diatoms and planktic foraminifera are poorly preserved and sedimentary organic matter content is near zero during the late Eocene, our ability to examine nutrient dynamics across this important climate transition is limited. Here we present new data exploring the use of N isotope records from radiolarian tests. A comparison of surface ocean nitrate and core top bulk and radiolarian N isotope values (as δ15N) from the equatorial Pacific indicates that radiolarian-N records δ15N variability with fidelity but that a significant offset exists between bulk sedimentary and diatom δ15N values and those measured from radiolarians (~7.1 ± 1.1‰). A downcore profile of radiolarian δ15N values is compared to siliceous microfossil assemblage changes across the Eocene-Oligocene boundary. Average of radiolarian-bound δ15N values is 0.5 ± 2.0‰, which, when corrected using the offset derived from the modern surface samples, suggests that the mean nitrogen isotopic composition of the early Cenozoic eastern Pacific was not significantly different from today. The overall trend, of decreasing δ15N values with decreasing export productivity, is consistent with either a regional decline in pelagic denitrification or a large-scale change in nutrient sources to the eastern equatorial Pacific (EEP), both linked to the cooling climate and changing intermediate water circulation. Decreasing/low δ15N values cooccur with high radiolarian species turnover at ~35.5 and 34 Ma, suggestive of a significant ecological change in the EEP, consistent with cooling and water mass distribution changes. The preliminary results suggest that radiolarian-bound organic nitrogen represents another promising archive and underscores the fact that the different microfossil fractions must be separated to ensure robust results

    Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events

    Full text link
    Events of the Paleocene-Eocene boundary provide the clearest example to date of how a tectonic event may have global climatic consequences. Recent advances permit well-constrained stratigraphic determination of several events that occurred at that boundary, in chron C24R: a many-fold increase in sea-floor hydrothermal activity, a global warming, a reduction in the intensity of atmospheric circulation, a conversion to salinity-driven deep ocean circulation, a marked lightening of oceanic [delta]13C values, extinction and evolution of both benthic foraminifera and land mammals, and important place-boundary reorganizations including the outpouring of the east Greenland volcanics and the initiation of the oceanic rift between Norway and Greenland.We hypothesize that enhanced sea-floor hydrothermal activity occasioned by global tectonism resulted in a flooding of the atmosphere with CO2, causing a reduced pole-to-equator temperature gradient and increased evaporation at low latitudes. Increased formation of warm, salty, probably low-nutrient waters coupled with the warm temperatures at high latitudes occasioned a salinity-driven, rather than temperature-driven, deep-water circulation. This newly-evolved ocean circulation pattern changed the apportionment of global heat transport from the atmosphere to the ocean, with concomitant changes in the circulation intensity of both. Reduced intensity of atmospheric circulation resulted in lower oceanic biological productivity and enhanced seasonality of climate on the continents. A major extinction event among benthic foraminifera was probably a response to the new low-nutrient and chemically changed bottom waters, and endemism following rapid evolution and dispersal of mammalian orders may have been in response to the new continental climate regime.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28490/1/0000285.pd

    Expanded oxygen minimum zones during the late Paleocene-early Eocene:Hints from multiproxy comparison and ocean modeling

    Get PDF
    Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important insight into the relationship between de-oxygenation and warming can be gleaned from the geological record, but evidence is limited because few ocean oxygenation records are available for past greenhouse climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene bottom and pore-water redox conditions in the South Atlantic and Southern Indian Oceans, and compare our results with those derived from Mn speciation and the Ce anomaly in fish teeth. We conclude that waters with lower oxygen concentrations were widespread at intermediate depths (1.5-2 km), whereas bottom waters were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3 km). Epifaunal benthic foraminiferal I/Ca values were higher in the late Paleocene, especially at low oxygen sites, than at well-oxygenated modern sites, indicate higher seawater total iodine concentrations in the late Paleocene than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as simulated in a comprehensive climate model (CCSM3), but the simulated absolute dissolved O2 values are low (<~35 µmol/kg), while higher O2 values (~60-100 µmol/kg) were obtained in an Earth system model (cGENIE). Multi-proxy data together with improvements in boundary conditions and model parameterization are necessary if the details of past oceanographic oxygenation are to be resolved

    Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap

    Full text link

    Geochemistry and sedimentation rates of ODP Leg 199 sites and of surface sediments in the eastern Pacific ocean

    No full text
    We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219

    (Table T1) Carbon composition and biogenic silica of ODP Hole 199-1221C sediments

    No full text
    The Paleocene/Eocene (P/E) boundary, at ~55 Ma, is characterized by a transient warm period lasting 10,000 yr. This interval is globally characterized by significant chemical and biological signals. Ocean Drilling Program Core 199-1221C-11X captured the P/E boundary section at a depth of 154 meters composite depth. Biogenic components of the sediment were measured across this interval in order to better define the events that occurred at the P/E boundary in the equatorial Pacific Ocean. A 26-cm interval low in CaCO3 was identified, whereas biogenic silica and organic carbon remained unchanged. Although CaCO3, biogenic silica, and organic carbon (C-org) production is controlled by different constraints, it is unlikely that an environmental factor would cease production by CaCO3-producing organisms without affecting biogenic silica or C-org production. The data indicate that the CaCO3 P/E boundary event was caused by a change in CaCO3 preservation rather than a change in CaCO3 production
    • …
    corecore