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Abstract Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important
insight into the relationship between deoxygenation and warming can be gleaned from the geological
record, but evidence is limited because few ocean oxygenation records are available for past greenhouse
climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene
bottom and pore water redox conditions in the South Atlantic and Southern Indian Oceans and compare our
results with those derived fromMn speciation and the Ce anomaly in fish teeth. We conclude that waters with
lower oxygen concentrations were widespread at intermediate depths (1.5–2 km), whereas bottom waters
were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3 km). Epifaunal benthic
foraminiferal I/Ca values were higher in the late Paleocene, especially at low-oxygen sites, than at
well-oxygenated modern sites, indicating higher seawater total iodine concentrations in the late Paleocene
than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as
simulated in a comprehensive climate model (Community Climate System Model Version 3), but the
simulated absolute dissolved O2 values are low (<~35μmol/kg), while higher O2 values (~60–100μmol/kg)
were obtained in an Earth system model (Grid ENabled Integrated Earth system model). Multiproxy data
together with improvements in boundary conditions and model parameterization are necessary if the details
of past oceanographic oxygenation are to be resolved.

1. Introduction
1.1. Ocean Deoxygenation During Periods of Global Warming

Recent ocean warming may already have contributed to a decrease in dissolved oxygen concentrations in
the oceans [Falkowski et al., 2011; Helm et al., 2011]. Less oxygen dissolves in seawater at higher temperatures
[Weiss, 1970], and transient surface warming leads to increased stratification and hence reduced ventilation.
Oxygen minimum zones (OMZs) may have expanded and shoaled over the last 50 years, affecting valuable
fisheries [Stramma et al., 2008; Reid et al., 2009; Keeling et al., 2010]. Records covering the previous century,
however, suggest that recent global warming probably was not the only factor, and decadal time scale ocea-
nographic fluctuations may have contributed to changing ocean oxygen levels [e.g., Falkowski et al., 2011;
Deutsch et al., 2014]. On longer time scales, warming may drive intensified continental weathering, delivering
a greater nutrient flux to the ocean [e.g., Pierrehumbert, 2002; Wild and Liepert, 2010]. Other things being
equal, this increased nutrient inventory will stimulate productivity, organic matter export fluxes, hence
greater oxygen consumption in the ocean interior [e.g., McInerney and Wing, 2011; Giusberti et al., 2016]. In
addition, under higher oceanic temperatures, the remineralization of organic matter in the water column
may have proceeded faster at higher metabolic rates in warmer waters, thus have been more efficient
and occurred at shallower depths [Olivarez Lyle and Lyle, 2006; Boscolo-Galazzo et al., 2014; John et al.,
2014; Ma et al., 2014]. These processes will influence oceanic dissolved oxygen concentrations in different
ways at different locations, and some will combine nonlinearly (e.g., stratification and remineralization with
biological productivity), making it difficult to project the extent and severity of ocean deoxygenation induced
by global warming. Investigating the evolution of oxygen content in the ocean interior across past global
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warming events could provide analogs to anthropogenic climate change and help us understand the extent
and possible mechanisms of future ocean deoxygenation.

Ocean redox changes have been studied intensively across episodes of extreme warming and oxygen
depletion, such as the Oceanic Anoxic Events of the Jurassic and Cretaceous [e.g., Jenkyns, 2010; Lu
et al., 2010]. However, these events may not provide the best geological analogs for predicting ocean
deoxygenation in the Anthropocene, because of the extreme conditions and very different tectonic con-
figuration of the continents and ocean basins during these events. The greenhouse conditions during the
Paleogene may be more similar to the future challenges to human society [e.g., Norris et al., 2013].

Global climate in the late Paleocene-early Eocene was overall warm, and there probably were no polar ice
sheets. Superimposed on this “greenhouse climate” were short periods of extreme global warming, the
hyperthermal events. The Paleocene Eocene Thermal Maximum (PETM, ~56Ma) was the most extreme
of these and was an abrupt, transient period of global warming characterized by a surface ocean warming
of at least 4–5°C [Dunkley Jones et al., 2013], with the transition into this event possibly occurring over a
few kiloyears [Zeebe et al., 2014; Kirtland Turner and Ridgwell, 2016; Zeebe et al., 2016]. It has been specu-
lated that the early Paleogene oceans were less oxygenated compared to today [Norris et al., 2013] based
on the benthic foraminiferal oxygen index (BFOI) [Kaiho, 1994], but this speculation is qualitative, and the
index has not been supported in studies of living benthic foraminifera [e.g., Gooday, 2003; Jorissen et al.,
2007]. However, several other lines of evidence suggest at least large-scale regional ocean deoxygenation
during the PETM [e.g., Dickson et al., 2012, 2014]. I/Ca data on planktonic foraminifera indicate expanded
OMZs in the upper water column of major oceans [Zhou et al., 2014], which may be related to the
increase of the temperature-dependent remineralization rate, thus more intense O2 depletion at shallow
depths [e.g., John et al., 2014]. Bottom water oxygen depletion occurred in marginal basins of the Tethys
and peri-Tethys [e.g., Canudo et al., 1995; Speijer, 1997; Bolle et al., 2000; Gavrilov et al., 2003; Soliman et al.,
2011; Dickson et al., 2014; Giusberti et al., 2016], along continental margins such as New Jersey [Lippert and
Zachos, 2007; Stassen et al., 2012, 2015] and New Zealand [Nicolo et al., 2010], and in the Arctic Ocean
[Sluijs et al., 2006].

However, evidence for oxygenation changes in the deep open ocean is less clear. This is important because
the only major extinction occurring across the PETM was among benthic foraminifera, and reduced oxygen
availability is at least part of the leading explanations [e.g., Thomas, 1989; Kennett and Stott, 1991; Kaiho et al.,
1996; Thomas, 2003], though not supported at all locations [Thomas, 2007; Alegret et al., 2010]. Redox-
sensitive trace metals indicate low-oxygen bottom waters at bathyal (1000–3000m) but not abyssal
(>3000m) depths before and after the PETM onWalvis Ridge in the South Atlantic Ocean and deoxygenation
from bathyal to abyssal depths during the PETM in the same region [Chun et al., 2010]. Very transient deox-
ygenation (during the interval of noncarbonate deposition) may have occurred even at abyssal depths, as
indicated by the presence of an unusual Mn-oxide mineral, jianshuiite, possibly formed during the recovery
from pore water deoxygenation [Post et al., 2016]. Mn enrichment data suggest that suboxic sedimentary
conditions occurred prior to, during, and in the recovery from the PETM at intermediate depth sites in the
Atlantic and Southern Oceans, whereas Pacific sites remained relatively oxygenated [Pälike et al., 2014].

Here we supplement trace-metal-based approaches by using the novel redox proxy of I/Ca in benthic forami-
niferal tests to reconstruct bottom water and pore water oxygenation conditions in the late Paleocene
through early Eocene in the South Atlantic and Southern Indian Ocean. We have very few I/Ca data during
the PETM itself due to the scarcity and small size of benthic foraminiferal tests directly after the benthic
foraminiferal extinction event, so we evaluate general oceanic conditions during the overall warm period
of the late Paleocene-early Eocene. We also report Ce anomaly data in fish teeth to compare with the I/Ca
and published Mn speciation records [Chun et al., 2010; Pälike et al., 2014]. We then compare all data to dis-
solved oxygen contents of bottom waters in the late Paleocene as simulated from Community Climate
System Model Version 3 (CCSM3) [Collins et al., 2006; Winguth et al., 2010, 2012] and an Earth system model
(Grid ENabled Integrated Earth system model (cGENIE)) [e.g., Ridgwell et al., 2007].

1.2. I/Ca as a Redox Proxy

Iodate (IO3
�) and iodide (I�) are the stable chemical forms of iodine in seawater and comprise the total iodine

concentration in the ocean. The relative abundance of iodate and iodide depends on the redox condition of

Paleoceanography 10.1002/2016PA003020

ZHOU ET AL. BENTHIC I/CA AND P-E BOTTOM WATER O2 1533



seawater, with iodate dominant in well-oxygenated waters, and iodide in anoxic waters [Rue et al., 1997]. Only
iodate is incorporated into the carbonate lattice, possibly due to the large ionic radius of I� [Lu et al., 2010,
and the references therein]. Since iodate enters the calcite lattice in proportion to the iodate concentration
in ambient seawater, I/Ca in calcite should reflect the iodate level, thus redox conditions of seawater [Lu
et al., 2010]. I/Ca in planktonic [Zhou et al., 2014; Lu et al., 2016] and benthic foraminifera [Glock et al.,
2014] test calcite were shown to reflect ocean redox conditions. Benthic foraminifera calcify on the ocean
floor or within the sediment, and thus should record the iodate concentrations, indicating oxygenation levels
in the bottom and/or pore water. Other than redox conditions, their I/Ca values may also be controlled by
total iodine concentration in bottom and/or pore waters, which affect iodate concentrations in the water.
We expect benthic foraminifera to record lower I/Ca at sites where an OMZ impinges on the seafloor [Rue
et al., 1997], and high I/Ca values at better oxygenated sites far below an OMZ (Figures 1a and 1b). The first
core top study of infaunal and epifaunal benthic species living near an OMZ confirmed that I/Ca values cor-
relate with bottom water [O2] and that infaunal species (calcifying from pore waters) have lower I/Ca than
epifaunal species [Glock et al., 2014]. Without a local OMZ, the iodate concentration in modern oxygenated
bottom water remains ~0.45μM, due to the oceanic residence time of iodine of ~300 kyr [Broecker and
Peng, 1982]. The concentration of iodate, a micronutrient, does not increase during the aging of deep waters
[Nakayama et al., 1989; Waite et al., 2006]. This is probably due to the low I/Corg in plankton [Elderfield and
Truesdale, 1980], and contrasts to the patterns of major nutrients in organic particles, such as nitrate and
phosphate, and δ13C in dissolved inorganic carbon (DIC). If the samemechanisms controlled iodine chemistry
in the Paleogene, similar epifaunal benthic I/Ca values should be expected for coeval sites without a local
OMZ, assuming that foraminiferal I/Ca values largely reflect seawater iodate levels [Glock et al., 2014; Zhou
et al., 2014; Lu et al., 2016].

1.3. Mn Oxides and Ce Anomalies as Redox Indicators

Mn is mostly delivered to the oceans as oxide coatings on particles by wind, river, or diffusion from shelf sedi-
ments [Bender et al., 1977; Calvert and Pedersen, 1993]. Mn is scavenged throughout the oxic part of the water
column and deposited on the seafloor mainly as Mn oxides in oxygenated bottom waters [Bender et al., 1977;
Klinkhammer and Bender, 1980], a process that may be biologically mediated [e.g., Tebo et al., 2004]. Mn oxi-
des are partially reduced to Mn2+ through microbial activity during early diagenesis of organic matter in the
sediments, and the dissolved Mn2+ moves upward through diffusion and advection, forming an authigenic
Mn oxide front in subsurface sediments at the oxic/suboxic boundary (Figures 1c and 1d) [Froelich et al.,
1979; Klinkhammer and Bender, 1980; Chun et al., 2010]. As such, the presence of abundant Mn oxide in bulk
sediments could suggest oxidative diagenetic alteration, and the absence of Mn oxide with the formation of
Mn carbonate in the sediment indicates deoxygenation. Some authigenic Mn oxide is reduced when buried
deeper in the sediment column [Mangini et al., 2001]. As Mn2+ becomes more concentrated, authigenic Mn
carbonate could precipitate, given sufficient alkalinity and DIC [Neumann et al., 2002; Schenau et al., 2002;
Pälike et al., 2014].

Cerium (Ce) is the only trivalent rare earth element (REE) that can be oxidized to the less soluble tetravalent
form Ce(IV) under oxygenated conditions. In oxic seawater, Ce(IV) is preferentially sequestered into
Mn-oxides and Mn-hydroxides [Elderfield et al., 1981; Bau et al., 1996; Tachikawa et al., 1999]. When the con-
centrations of REEs are normalized to the average concentrations in shales, redox-driven scavenging of Ce
produces seawater REE patterns with negative Ce anomalies, i.e., lower concentrations than predicted rela-
tive to the nearest REE neighbors lanthanum (La) and praseodymium (Pr). Different methods can be used
to denote a Ce anomaly, such as normalizing Ce to Nd rather than Pr. The Ce anomaly in this study is quanti-
fied by the ratio of Ce/Ce*, where Ce is the measured concentration and Ce* is the predicted concentration as
interpolated from La and Pr, as in the equation Ce/Ce* = 2 (Ce/Ceshale)/(La/Lashale + Pr/Prshale) [De Baar et al.,
1985]. REE concentrations in shales are from Haskin and Haskin [1966]. The Ce/Ce* value is around 0.1 for oxic
seawater (i.e., negative anomaly) and approaches unity (i.e., 1.0) in low-oxygen environments. Mn-oxides and
Mn-hydroxides have positive Ce anomalies [Bau et al., 1996; Ling et al., 2013]. Ce is mostly oxidized and
adsorbed onto Mn(IV) particles in surface waters through biological activities; thus, the Ce anomaly value
remains constant below OMZs, although O2 concentration increases with depth in the water column [Alibo
and Nozaki, 1999; Ling et al., 2013]. In modern oceans, Ce/Ce* in the pore waters with oxic overlying bottom
waters is generally below 0.5, whereas that in suboxic pore waters is between 0.5 and 1 (Figure 1e) [Haley
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Figure 1. Expected iodate depth profiles in the water column and pore water for Sites (a) 1262 and (b) 1263, (c and d) Mn2+

and Mn oxides depth gradient, and (e) Ce/Ce* profile in pore water under different redox conditions. Data for Figures 1a
and 1b are from Rue et al. [1997] and Kennedy and Elderfield [1987]. Figures 1c and 1d are modified from Schenau et al.
[2002] and Reitz et al. [2006]. The red line in Figure 1e represents the Ce/Ce* trend in sta10, a California margin site; the solid
green line denotes the Ce/Ce* record in MC64, a site from the Nazca Ridge off Peru; and the dashed green line is the dis-
solved O2 concentration in pore water at the same site [Haley et al., 2004]. The red bar in Figure 1d is defined as Ce/Ce* = 1,
and the grey bar as Ce/Ce* = 0.5. Ce/Ce* values to the left of the grey bar are typical in oxic pore water, while values
between the red and gray bars suggest suboxic pore water, as is shown in Figure 2.
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et al., 2004]. REEs are rapidly incorporated into fish teeth during early diagenesis, while still in contact with
seawater, exchanging with pore water during later burial at a much slower rate [Kocsis et al., 2010;
Herwartz et al., 2011].

2. Sites and Methods
2.1. Study Sites

We generated benthic foraminiferal I/Ca records from four open ocean sites drilled by the Ocean Drilling
Program (ODP): ODP Sites 1262 (paleodepth 3600m) and 1263 (paleodepth 1500m) on Walvis Ridge in
the southeastern Atlantic Ocean, ODP Site 690 (paleodepth 1900m) on Maud Rise (Weddell Sea) in the
Southern Ocean, and ODP Site 738 on Kerguelen Plateau in the southern Indian Ocean [Thomas, 1990,
1998; Zachos et al., 2004; Winguth et al., 2012]. These sites provide the opportunity to show bottom water
redox conditions at different water depths and allow comparison with Ce and Mn proxies. Combined with
previous investigations into upper ocean redox conditions by measuring I/Ca in planktonic foraminiferal tests
[Zhou et al., 2014], this study may help in understanding the hydrography at these sites.

2.2. Foraminiferal I/Ca

We picked specimens from single species or genera of benthic foraminifera, i.e., the epifaunal Nuttallides
truempyi, Cibicidoides spp. (mainly biconvex species with coarse pores on the evolute side, belonging to
the C. mundulus/praemundulus group and Cibicidoides eocaenus), Stensioeina beccariiformis, and
Anomalinoides danica; the shallow infaunal Oridorsalis umbonatus; and the deeper infaunal Lenticulina spp.
(Table 1) [Thomas and Shackleton, 1996; Katz et al., 2003]. Whether benthic foraminiferal species live infaun-
ally or epifaunally is not well known. For many taxa the relationship between test morphology and microha-
bitat has not been observed but is extrapolated from data on other taxa and morphological similarities [e.g.,
Jorissen et al., 2007]. In addition, many foraminifera move vertically through the sediment [e.g., Rathburn and
Corliss, 1994; Gooday and Rathburn, 1999]. In one of the few studies evaluating the links between test mor-
phology and microhabitat statistically, assignments for modern foraminifera were found to be accurate only
about 75% of the time [Buzas et al., 1993]. We thus mainly rely on stable isotope data to assign species to a
dominantly infaunal or epifaunal status [Thomas and Shackleton, 1996; Katz et al., 2003].

The specimens were crushed between two glass slides to open the chambers of each foraminifer, then
cleaned following the Mg/Ca protocol in Barker et al. [2003]. Crushed foraminiferal shells were transferred
to centrifuge tubes and put in an ultrasonic water bath to remove clays, before cleaning by NaOH-buffered
H2O2 to remove organic material. The H2O2 solutions were then removed, and the specimens were rinsed
with deionized water for 3 times.

The cleaned foraminiferal shells were dissolved in 3% (v/v) HNO3 andmixed with amatrix, containing internal
standards and buffered by tertiary amine. Iodine and calcium concentrations were then measured by induc-
tively coupled plasma–mass spectrometer (ICP-MS) at Syracuse University. Calibration standards were freshly
made for each batch of samples. The 1 ppb iodine signal was tuned to 80–120 kHz, with blank signal as low as
30 kHz. The reference material JCp-1 was measured repeatedly to maintain long-term accuracy [Lu et al.,
2010]. The standard deviation for each measurement of iodine and calcium is usually lower than 1%.

2.3. Fossil Fish Tooth REE Concentrations

Fossil fish teeth were hand-picked from the >150μm size fraction of selected samples from a separate sam-
ple set than used for foraminiferal I/Ca. Fossil fish teeth samples consisted of two to five teeth each, ranging
from 10 to 100μg. Samples were sonicated in quartz distilled water and methanol to remove debris from sur-
faces and cavities, then treated with reductive and oxidative steps to remove oxides and organic matter, and
weak acid steps [Boyle, 1981; Boyle and Keigwin, 1985; Rosenthal et al., 1997]. Samples were then transferred
into precleaned microcentrifuge tubes before and after the partial dissolution step. Cleaned fish teeth were
weighed by using a microbalance and transferred into clean microcentrifuge tubes. The material was then
dissolved in a dilute internal standard solution (2% HNO3 containing indium, rhenium, and bismuth (In, Re,
and Bi), used as internal standards) and measured on an element ICP-MS at the University of California at
Santa Cruz or the University of South Carolina. Tuning and calibration were carried out with the guard elec-
trode switched off to reduce oxide formation rates. This tended to produce lower signals, but counts per sec-
ond were still remarkably high due to high concentrations of REE in fossil fish teeth. Silicate rock standards
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(AGV-2, W-2, BCR-2, DNC-1, BIR-1, and BHVO-2) were used to produce a calibration curve for REE concentra-
tions. Matrix effects were examined in two ways. First, the silicate rock standard W-2 was doped with calcium
and phosphorus to mimic expected concentrations in phosphate samples. Doped and undoped W-2, run as
unknowns, did not show any measureable differences in REE concentrations. Second, a phosphate standard,
the fossil bone composite [Chavagnac et al., 2007], was run as an unknown by using the silicate rock-based
calibration curve. Repeat measurements of the fossil bone composite yielded REE concentrations within 2–
6% of values reported in Chavagnac et al. [2007] and showed an excellent fit with data compiled during
the calibration of this standard [Scher et al., 2011].

2.4. Model Projected Bottom Water O2 Concentrations During the Late Paleocene

Bottom water oxygen concentrations for the late Paleocene were simulated in the fully coupled atmosphere-
ocean general circulation model Community Climate System Model Version 3 (CCSM3) [Collins et al., 2006]
that includes a land surface and sea ice model [Winguth et al., 2010, 2012]. CCSM3 has spectral horizontal
resolution of T31, which uses a transform grid of ~3.75° × 3.75°, 26 vertically unevenly spaced terrain-
following levels in the atmosphere, and a nominal 3° horizontal grid with 25 vertical layers in the ocean.
The model was fully coupled and integrated for 2500 years. We used the oxygen simulation results in a ×4
CO2 and a ×8 CO2 scenario with prescribed pCO2 of ×4 and ×8 preindustrial atmospheric levels (PAL) of
280 ppmv, respectively [Winguth et al., 2012].

In addition, we used the “cGENIE” Earth systemmodel [Ridgwell et al., 2007], a 3-D dynamic ocean circulation
model with simplified “energy and moisture” balance atmosphere [Edwards and Marsh, 2005], a representa-
tion of the biogeochemical cycling of elements and isotopes in the ocean [Ridgwell et al., 2007] including that
of 13C [Kirtland Turner and Ridgwell, 2016]. Here we applied the early Eocene configuration of Ridgwell and
Schmidt [2010], which assumed 834 ppm CO2 in the atmosphere. The 10° longitude (and variable latitude)
grid spacing is ~3 times on average coarser than in CCSM3, but the much shorter run-time enables us to
explore a wide range of potential scenarios of past ocean circulation.

3. Results

We measured I/Ca at four open ocean sites in uppermost Paleocene and lowermost Eocene sediments, but
with only few observations within the PETM (Figure 2). Benthic I/Ca data were plotted combined with δ13C
records for each site, showing the negative carbon isotope excursion (CIE) starting at 0 kyr, negative ages
representing the late Paleocene (Figure 2). We generated N. truempyi (epifaunal) I/Ca records for all sites;
other benthic species are not as commonly present. Nuttallides truempyi, however, is generally absent just
after the onset of the PETM [Foster et al., 2013].

Nuttallides truempyi I/Ca values at Site 1262 are generally higher than those at other sites, with average
Paleocene I/Ca values of 26.2μmol/mol, 19.1 at Site 1263, 19.2 at Site 690, and 17.6 at Site 738 (Table 1).
I/Ca values of N. truempyi are generally higher than values of other epifaunal benthic species in the same sam-
ple interval. Cibicidoides spp. (epifaunal) and S. beccariiformis (epifaunal) have I/Ca values ranging from 10 to
20μmol/mol at Sites 1262, 1263, and 690. At Site 1263, N. truempyi have consistently higher I/Ca values than
Cibicidoides spp. (Figure 2), indicating higher iodate uptake efficiency in N. truempyi. Two I/Ca values of A.
danica (epifaunal) are higher than those of N. truempyi at Site 690 (Figure 2). Among the four sites, we have
only a few observations within the CIE, with values of epifaunal species slightly lower during the CIE

Table 1. Average I/Ca and Standard Deviation (μmol/mol) for Each Foraminiferal Species at Each Site

Epifaunal
Epifaunal/Attached
to Raised Surfaces Epifaunal Epifaunal

Shallow Infaunal
(0–4 cm)

Shallow to
Deep Infaunal

N. truempyi Cibicidoides spp. S. beccariiformis A. danica O. umbonatus Lenticulina spp.

Site
Paleodepth

(m) Pre-CIE � CIE � Pre-CIE � CIE � Pre-CIE � Pre-CIE Pre-CIE � CIE � Pre-CIE � CIE �
738 1400 17.6 1.3 16.8 5.7
690 1900 19.2 1.1 19.3 1.3 16.7 22.6 0.8 1.1 0.5
1262 3600 26.2 3.3 27.2 6.4 14.4 4.2 8.4 3.2 4.7
1263 1500 19.1 2.6 21.1 2.9 13.8 2.4 11.7 0.4 17.6 2.2 2.6 1.1 1.9 0.6 2.2 0.2 1.5 0.1
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compared to pre-CIE at both Sites 1262 and 1263. However, data points fromwithin the CIE recovery intervals
at Sites 690 and 738 show values similar to those in the late Paleocene (Figure 2).

I/Ca values in Oridorsalis umbonatus and Lenticulina spp. are generally below 10μmol/mol, considerably
lower than in the epifaunal species (as expected), recording in situ pore water iodate levels. TheO. umbonatus
I/Ca values at Site 1262 are relatively higher (5–15μmol/mol) than at Sites 1263 and 690, which are below
3μmol/mol. The shallow infaunal species O. umbonatus has slightly higher values than the potentially deeper
infaunal Lenticulina spp. at Site 1263. The I/Ca records of species from different habitats at the same time thus
suggest that benthic foraminiferal tests indeed reflect iodate levels in the waters where the foraminiferal tests
were calcified. At Site 1263, the only site from which I/Ca data for infaunal species within the CIE are available
for a sufficient number of samples, the I/Ca values in infaunal taxa in the CIE do not differ significantly from
background values.

The Mn oxide enrichment factors (EFs) were calculated from published Mn EF values in bulk sediment with
and without reductive cleaning [Chun et al., 2010; Pälike et al., 2014]. Total concentrations of Mn were mea-
sured on a high-resolution ICP-MS [Chun et al., 2010]. Bulk sediment Mn EF represents the sum of Mn oxides
and MnCO3, whereas the Mn EF measured after reductive cleaning reflects only MnCO3. We calculated the
difference between these two sets of EF values to denote the Mn oxide EF. Site 1262 is the only site with per-
sistent Mn oxide preservation. Other sites generally do not show Mn oxides, probably indicating bottom
water oxygen levels lower than that at Site 1262.

Fish teeth Ce/Ce* data are available for the two Walvis Ridge sites, showing contrasting values and patterns
(Figure 2). All Ce/Ce* values are below 0.5 at the deeper Site 1262, decreasing from ~0.25 in the upper
Paleocene to nearly 0 at the beginning of the CIE. The Ce/Ce* value rose from 0 to ~0.43 kyr, from 0 to

Figure 2. Benthic I/Ca, Mn oxide, and Ce/Ce* records for multiple open ocean sites, including ODP sites 1262 and 1263 onWalvis Ridge, Atlantic Ocean, ODP Site 690
in the SouthernOcean, and ODP Site 738 in Indian Ocean [Chun et al., 2010]. The error bars are plotted for I/Ca data points when available. δ13C record is plotted in every
figure showing the CIE. The vertical gray bars indicate the temporal extent of the CIE. The horizontal gray bars in I/Ca plots represent the average I/Ca values in
N. truempyi excluding those low values at Site 1262. The horizontal gray bars in Ce/Ce* plots are defined as Ce/Ce* = 1 and the red bars as Ce/Ce* = 0.5. Ce/Ce* values
above the red bars represent anoxic/euxinic pore water, values between the gray and red bars suggest suboxic condition, and values below the grey bars indicate oxic
pore water.

Paleoceanography 10.1002/2016PA003020

ZHOU ET AL. BENTHIC I/CA AND P-E BOTTOM WATER O2 1538



~250 kyr, then decreased to ~0.2 at ~350 kyr. The Ce/Ce* values at Site 1263 mostly scatter between 0.5 and 1
without a clear trend. The contrasting Ce/Ce* values at two Walvis Ridge sites confirm the presence of more
oxygenated bottom waters at the deeper Site 1262.

Bottom water O2 concentrations in CCSM3 (×4 CO2) decrease from Site 1262 to Sites 690, 1263, and 738
(Figure 3a), with very low values of ~20–30μmol/kg. Much higher bottom water O2 concentrations
(>150μmol/kg) were simulated for all sites in the default configuration of cGENIE. Additional scenarios were
evaluated in cGENIE, and the range of O2 concentrations can be reduced to ~60–90μmol/kg by adding fresh
water at high southern latitudes, forcing the model to modify circulation patterns and decrease ocean venti-
lation in the regions where our sample sites were located.

4. Discussion
4.1. Vertical O2 Gradient on Walvis Ridge

Today, iodate concentrations are nearly uniform in well-oxygenated intermediate to deep waters. Iodate gets
depleted close to or within an OMZ or in anoxic bottom water only [e.g., Wong and Brewer, 1977; Rue et al.,
1997]. If these observations are applicable to the early Cenozoic, Site 1262, as the deepest site (paleo depth
3.6 km), is least likely to be affected by an OMZ, thus should have high O2 and record high seawater iodate
concentration. The N. truempyi I/Ca values are higher at Site 1262 than at all other studied sites. Most I/Ca
values of N. truempyi at Site 1262 are around 26μmol/mol, whereas the values are notably lower
(~19μmol/mol) at the nearby, shallower Site 1263 (paleodepth of 1.5 km; Figure 2 and Table 1). If the differ-
ence in N. truempyi I/Ca values between these two Walvis Ridge sites was mostly driven by bottom water
iodate concentrations, then the shallower Site 1263 was closer to an OMZ.

Such an interpretation is consistent with the reported Mn speciation data. Site 1262 is the only site that per-
sistently preservedMn-oxides, with Mn EFs as high as 11, and the Mn trend follows the δ13C record, exhibiting
lowest values at the beginning of the CIE (Figure 2). The lack of Mn oxides (as seen by the lack of microno-
dules) at other sites (Figure 2) most likely can be explained by the presence of low bottom water O2 and neg-
ligible O2 penetration into pore water, preventing the growth of diagenetic Mn oxides. Most of the Mn oxide
EFs at Site 1263 are close to 0, except for one data point at -42.1 kyr (Figure 2) [Chun et al., 2010; Pälike et al.,
2014]. Fish teeth Ce anomaly values (<0.5) indicate pore water oxygen penetration at the deepest Site 1262
before, during, and after the CIE. The Ce anomaly at Site 1263 indicates low bottomwater oxygen. Epi-benthic
I/Ca, Mn speciation and Ce anomaly are three independent redox proxies with different geochemical con-
trols. The excellent consistency among these proxies at the Walvis Ridge sites strongly indicates the presence
of an OMZ at intermediate depth, whereas bottom water at the deeper Site 1262 must have been well oxy-
genated. Currently, none of these proxies is yet capable of providing a robust, quantitative estimate of dis-
solved O2 concentrations. In addition, there is an interval without carbonate (thus without foraminifera)
across the PETM at Site 1262, where we have no I/Ca data. Micronodules with an unusual Mn-oxide
(jianshuiite) in this interval indicate that a transient period of declining pH and Eh conditions may have
occurred even at this deep site [Post et al., 2016].

In addition to seawater iodine concentration and local-regional OMZ presence, iodine speciation changes in
shallow pore waters influence I/Ca values in infaunal foraminifera. Iodate concentrations in the pore water of
marine sediments commonly increase from the oxygenated sediment-water interface toward the shallow
subsurface, then decrease to zero at the oxic/anoxic boundary [Kennedy and Elderfield, 1987], an early diage-
netic feature similar to solid phase manganese enrichment (Figures 1a–1d). Lower bottom water O2 concen-
trations may partially limit the pore water O2 penetration beneath the sediment-water interface, leading to a
steeper iodate depth gradient (Figures 1a and 1b). Thus, infaunal benthic foraminifera are expected to record
low I/Ca values under poorly oxygenated bottomwater, integrating the steep pore water iodate gradient in a
narrow habitat. At well-oxygenated sites, infaunal I/Ca values may heavily depend on calcification depth.
Shallow infaunal species living close to the pore water iodate peak may record high I/Ca values, but deep
infaunal species living near the anoxic boundary would have low I/Ca, even with high bottom water O2

(Figures 1a and 1b). Regardless of additional complications such as changing depth habitat [e.g., Jorissen et al.,
2007; Gooday and Rathburn, 1999], infaunal species are more likely to record higher I/Ca at well-oxygenated
sites than at O2-depleted sites. I/Ca in Eocene O. umbonatus is ~10μmol/mol at Site 1262, compared to
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Figure 3. (a) Pre-CIE average N. truempyi I/Ca values at each site are plotted against modeled bottom water O2 in the late Paleocene by CCSM3 [Winguth et al., 2012]
and two simulations by cGENIE (i.e., control and hosing). The error bars of pre-CIE I/Ca values stand for the standard deviation of those values, and those of modeled
bottom water O2 by CCSM3 represent the O2 levels approximately 500m above or below the paleodepth of each site. (b) Modeled O2 concentrations through
the water column onWalvis Ridge in the late Paleocene by CCSM3 and cGENIE. (c and d) Modeled global seafloor oxygen levels with atmospheric pCO2 of ×4 and ×8
PAL in the late Paleocene by CCSM3. (e) Simulated global seawater O2 levels at ~2000m by cGENIE under the condition of ×3 CO2 in the default late Paleocene
(control experiment), with the symbols of diamond, circle, and triangle representing site locations of 1262 and 1263, 690, and 738, respectively. (f) Same settings as
Figure 3e except adding fresh water at high-latitude South Atlantic Ocean (hosing experiment).
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~3μmol/mol at Site 1263 (Figure 2), most likely due to lower bottom water O2 at Site 1263, consistent with
the conclusions drawn from epi-faunal I/Ca, Mn, and Ce data.

4.2. Possible Widespread O2 Depletion at Intermediate Depths

Norris et al. [2013] suggested that ocean oxygenation may have been relatively poor during greenhouse cli-
mates, based on BFOI only, which is not considered a reliable proxy [e.g., Jorissen et al., 2007]. It is challenging
to use biological or geochemical proxies to make even semiquantitative estimates of bottom water dissolved
O2 concentrations at a specific site, beyond general assessment of relatively more oxic or more reducing con-
ditions. The available Mn data suggest that oxygenation of bottom waters was low during the PETM in the
Atlantic Ocean but high across the late Paleocene-early Eocene in the Pacific Ocean [Pälike et al., 2014].

If the relatively low Paleocene I/Ca in N. truempyi at Site 1263 (compared to Site 1262) indeed indicates the
influence of an OMZ, very similar N. truempyi I/Ca values at Sites 690 and 738 (Table 1) may indicate wide-
spread O2 depletion at the intermediate depths of high-latitude South Atlantic and Southern Indian Oceans,
in agreement with Pälike et al. [2014]. The Mn oxide EFs are almost all zeros at Site 690, except for a peak of
4.75 near 100 kyr, which suggests suboxic bottom waters with the peak in uranium EF occurring at the same
time with peak Mn EF values [Pälike et al., 2014]. Mn oxide EF values at Site 738 are all near zero [Pälike et al.,
2014]. In addition, I/Ca values in O. umbonatus at Site 690 are also comparable to those at Site 1263, much
lower than theO. umbonatus values at Site 1262, further supporting other proxy data. However, to better con-
strain the bottom water redox conditions at Sites 690 and 738, a multiproxy comparison for extended depth
transects is needed.

4.3. CIE Versus Non-CIE

Due to the lack of epifaunal specimens in the CIE interval, we cannot reconstruct detailed changes in oxyge-
nation during the PETM. I/Ca values in N. truempyi do not follow the benthic δ13C trend at any site, indicating
that the seafloor deoxygenation was not fully synchronous with the global carbon perturbation, thus warm-
ing. Relatively, lower I/Ca values seem to appear during short intervals, which appear to occur more fre-
quently close to or within the CIE interval on Walvis Ridge, suggesting that exacerbated deoxygenation
may have occurred in short pulses. These records, however, may have been influenced by bioturbation, so
that the short peaks may not reflect seafloor conditions, but vertical distribution of foraminiferal populations
affected to different extents by mixing of PETM and non-PETM specimens. Such bioturbation is commonly
seen in high-resolution stable isotope, single specimen data [e.g., Thomas et al., 2002]. Most N. truempyi
I/Ca values during the recovery stage of the CIE are very similar to those of non-CIE intervals (Figure 2 and
Table 1), possibly suggesting that carbonate dissolution and seawater pH might not have a dominant effect
on N. truempyi I/Ca. This should be further investigated.

4.4. Seawater Iodine Concentrations

The bottom water iodate concentration at Site 1263, which was near an OMZ, should have been lower than
that at oxygenated sites in the late Paleocene. In modern oceans, iodate accounts for over 99% of total iodine
in the bottom water of deep oceans [e.g., Tsunogai, 1971], recorded as high I/Ca values in benthic foramini-
fera. Assuming a similar mechanism in the late Paleocene, the I/Ca values in benthic foraminifera from oxy-
genated bottom water, as recorded at Site 1262, should reflect the total iodine concentration in seawater
at that time. Themajority of the I/Ca values in late Paleocene epifaunal species (Cibicidoides spp. and N. truem-
pyi) are the highest among all I/Ca values reported in foraminifera and bulk carbonate [e.g., Zhou et al.,
2014, 2015; Glock et al., 2014]. Considering potential vital effects from different epifaunal species, we com-
pared Cibicidoides spp. I/Ca values, from modern oceans and from the late Paleocene. Cibicidoides spp. at
Site 1263, living in O2-depleted bottom water with low iodate, have I/Ca values higher than those
(~10μmol/mol) in core-top samples (recent-late Holocene specimens) from North and South Atlantic, with
O2 >200μmol/kg.

This suggests that the total iodine concentration in the late Paleocene-early Eocene was higher than it is in
modern-Holocene seawater. These I/Ca records are not long enough to show whether such high iodine con-
centrations lasted for a few million years around the Paleocene-Eocene boundary or were present for a more
substantial portion of the early Cenozoic. Sustaining high seawater iodine concentrations over tens of mil-
lions of years may involve complex earth system changes, but shorter perturbations to the iodine cycle
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around the PETM could have been achieved by magma interactions with organic-rich (and iodine-rich) basin
sediments [Storey et al., 2007]. Lower organic carbon burial theoretically could increase total iodine concen-
tration in seawater, although no convincing evidence was found for iodine drawdown during Oceanic Anoxic
Events, characterized by enhanced organic carbon burial [Zhou et al., 2015]. Pore waters inmodern gas hydra-
tion fields are almost always enriched in iodine, orders of magnitude above seawater concentration [Lu et al.,
2008, 2011]. Box models may be able to evaluate the importance of pore water iodine release with methane
during the PETM, but a peak of higher I/Ca during the CIE is not evident in our records.

4.5. Data-Model Comparison

Proxy data from our sites in the South Atlantic and Southern Indian Ocean indicate that in the late Paleocene
OMZs were widespread and thick, extending down to 1.5–2 km in the water column. Planktonic foraminiferal
I/Ca values suggest that an OMZwas present at multiple open ocean sites during the PETM [Zhou et al., 2014].
To test this pattern, Paleocene average N. truempyi I/Ca values from each site were plotted against the bot-
tom water O2 concentrations modeled in CCSM3 (×4 CO2) and two experiments in cGENIE (Figure 3).

The state of past circulation in the late Paleocene is highly uncertain [e.g., Nunes and Norris, 2006; Zeebe and
Zachos, 2007; Lunt et al., 2010, 2012; Alexander et al., 2015]. Lunt et al. [2010] demonstrate that an atmospheric
CO2 and surface warming threshold could exist, beyond which any further CO2 rise and surface warming
leads to a disproportionately larger increase in temperature in the intermediate waters than in the deep
ocean. This kind of intermediate depth warming would reduce O2 solubility, and the integrated remineraliza-
tion of organic matter along its circulation pathway will also affect the local value of [O2].

First, comparing model results with I/Ca values, Site 1263 was located close to an OMZ and had lower bottom
water dissolved O2 concentrations than the deeper Site 1262 in all three simulations (Figures 3a and 3b). The
highest average I/Ca value corresponds to the highest modeled [O2] (Site 1262) in CCSM3, whereas the I/Ca
and simulated dissolved O2 concentrations are much lower at the other three sites. The pattern of bottom
water dissolved [O2] projected by CCSM3 is consistent with our measured gradients in I/Ca (Figure 3a).
However, the modeled bottom water [O2] are almost 1 order of magnitude lower than modern-day values
at the same sites, because of lower solubility and ocean ventilation, especially at high southern latitudes.
The deepest location (Site 1262) in particular would be relatively well ventilated under modern conditions,
whereas CCSM3 predicts a less ventilated state with a dissolved oxygen concentration of only ~30μmol/kg
in the simulation. We do not know the threshold [O2] beneath which N. truempyi I/Ca would start to decrease.
The preservation of Mn oxide, as observed at Site 1262, may require a dissolved [O2] of ~60–150μmol/kg in
bottomwater [Shaw et al., 1990], but the proxy data in this study cannot be reliably converted to dissolved O2

values to compare with CCSM3 simulations.

In the control ×3 CO2 scenario, cGENIE [Kirtland Turner and Ridgwell, 2016] predicts bottom water [O2] to be
>~150μmol/kg at Site 1262, with an overlying OMZ and hence depleted values at Site 1263 (Figure 3b).
However, the N-S Atlantic basinal O2 gradient in cGENIE is opposite to that in CCSM3 at intermediate depths
(e.g., ~2 km; Figure 3e). High bottomwater O2 concentrations simulated for Sites 690 and 738 associated with
their proximity to sites of deepwater formation in the default configuration of cGENIE are not supported by
the proxy data (e.g., I/Ca and Mn) at these two sites. In additional experiments (not shown) in which cGENIE
was spun up at higher assumed atmospheric pCO2, even intense greenhouse conditions of ×8 and ×16 CO2

did not reverse this N-S Atlantic O2 pattern at intermediate depths.

We hence explored whether alternative but more prescribed scenarios of large-scale ocean circulation could
produce O2 patterns and concentrations consistent with proxy data. We found that we were able to generate
a more CCSM3-like O2 pattern which better correlated with epi-benthic I/Ca at Sites 690 and 738 (Figure 3d),
by applying a fresh water forcing (hosing)—analogous to Atlantic Meridional Overturning Circulation “shut-
down” experiments for the last glacial and deglacial [e.g., Chikamoto et al., 2008], and hence slightly different
to the zonal E-P modification applied in the classic Paleogene paleo-ocean circulation experiment of Bice and
Marotzke [2001]. We do not suggest that such fresh water run off patterns necessarily occurred—we simply
use this methodological device to force the model to decrease ocean ventilation at the highest southern lati-
tudes. In comparing δ13C-derived patterns of circulation with I/Ca values, however, we note that Paleocene
bottom water DIC δ13C values simulated for our sites in the “hosing” experiment show a less significant cor-
relation with measured benthic δ13C as compared to the default Paleocene simulation. In other words, while

Paleoceanography 10.1002/2016PA003020

ZHOU ET AL. BENTHIC I/CA AND P-E BOTTOM WATER O2 1542



we can improve the correlation between modeled dissolved oxygen and I/Ca, we degrade the correspon-
dence between modeled bottom water DIC δ13C and measured benthic δ13C. The effect of stratification
and warming on O2 distribution needs to be better calibrated in the model. Future experiments may also
explore additional scenarios (e.g., export production, nutrient, and remineralization depth) and eventually
aim at reconciling both O2 patterns and O2 concentrations with a full suite of proxy data (e.g., I/Ca, Mn, Ce
anomaly, and δ13C).

5. Conclusion

Uppermost Paleocene-lowermost Eocene benthic foraminiferal I/Ca records at open ocean sites suggest that
benthic I/Ca can be used as bottom water (epifaunal) and pore water (infaunal) redox proxies, although on
these time scales other factors (e.g., seawater total iodine) should also be considered. The comparison of
benthic I/Ca with Mn oxide EF, Ce anomaly, and climate models suggests that waters at the deepest Site
1262 onWalvis Ridge were most oxygenated in the late Paleocene-early Eocene. Bottom waters at intermedi-
ate depths were likely affected by OMZs in the South Atlantic and Southern Indian Ocean, with lower oxygen
concentrations during this period of Greenhouse climate than in today’s oceans. The Cibicidoides spp. I/Ca
values at OMZ-influenced Site 1263 are higher than those in modern well-oxygenated open ocean locations,
suggesting higher total iodine concentrations in seawater in the late Paleocene than at present. CCSM3 and
cGENIE are both capable of simulating Paleocene oxygen depletion at the intermediate depth, but a fully
reconciled data-model comparison is complex because of the approximations made in both the paleo-
proxies and modeling.
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