7 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Supramolecular loop stitches of discrete block molecules on graphite: tunable hydrophobicity by naphthalenediimide end-capped oligodimethylsiloxane

    Get PDF
    The noncovalent functionalization of surfaces has gained widespread interest in the scientific community, and it is progressively becoming an extremely productive research field offering brand new directions for both supramolecular and materials chemistry. As the end-groups often play a dominant role in the surface properties obtained, creating loops with end-groups only at the surface will lead to unexpected architectures and hence properties. Here we report the self-assembly of discrete block molecules - structures in-between block copolymers and liquid crystals - featuring oligodimethylsiloxanes (ODMS) end-capped with naphthalenediimides (NDIs) at the 1-phenyloctane/highly oriented pyrolytic graphite (1-PO/HOPG) interface. These structures produce unprecedented vertically nanophase-separated monolayers featuring NDI moieties that regularly arrange on the HOPG surface, while the highly dynamic ODMS segments form loops above them. Such arrangement is preserved upon drying and generates hydrophobic HOPG substrates in which the ODMS block length tunes the hydrophobicity. Thus, the exact structural fidelity of the discrete macromolecules allows for the correlation of nanoscopic organization with macroscopic properties of the self-assembled materials. We present a general strategy for tunable hydrophobic coatings on graphite based on molecularly combining crystalline aromatic moieties and immiscible oligodimethylsiloxanes

    Supramolecular Loop Stitches of Discrete Block Molecules on Graphite: Tunable Hydrophobicity by Naphthalenediimide End-Capped Oligodimethylsiloxane

    No full text
    The noncovalent functionalization of surfaces has gained widespread interest in the scientific community, and it is progressively becoming an extremely productive research field offering brand new directions for both supramolecular and materials chemistry. As the end-groups often play a dominant role in the surface properties obtained, creating loops with end-groups only at the surface will lead to unexpected architectures and hence properties. Here we report the self-assembly of discrete block moleculesstructures in-between block copolymers and liquid crystalsfeaturing oligodimethylsiloxanes (ODMS) end-capped with naphthalenediimides (NDIs) at the 1-phenyloctane/highly oriented pyrolytic graphite (1-PO/HOPG) interface. These structures produce unprecedented vertically nanophase-separated monolayers featuring NDI moieties that regularly arrange on the HOPG surface, while the highly dynamic ODMS segments form loops above them. Such arrangement is preserved upon drying and generates hydrophobic HOPG substrates in which the ODMS block length tunes the hydrophobicity. Thus, the exact structural fidelity of the discrete macromolecules allows for the correlation of nanoscopic organization with macroscopic properties of the self-assembled materials. We present a general strategy for tunable hydrophobic coatings on graphite based on molecularly combining crystalline aromatic moieties and immiscible oligodimethylsiloxanes
    corecore