167 research outputs found

    Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species

    Get PDF
    The tree of eukaryotic life was reconstructed based on the analysis of 2,269 myosin motor domains from 328 organisms, confirming some accepted relationships of major taxa and resolving disputed and preliminary classifications

    Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motor proteins have extensively been studied in the past and consist of large superfamilies. They are involved in diverse processes like cell division, cellular transport, neuronal transport processes, or muscle contraction, to name a few. Vertebrates contain up to 60 myosins and about the same number of kinesins that are spread over more than a dozen distinct classes.</p> <p>Results</p> <p>Here, we present the comparative genomic analysis of the motor protein repertoire of 21 completely sequenced arthropod species using the owl limpet <it>Lottia gigantea </it>as outgroup. Arthropods contain up to 17 myosins grouped into 13 classes. The myosins are in almost all cases clear paralogs, and thus the evolution of the arthropod myosin inventory is mainly determined by gene losses. Arthropod species contain up to 29 kinesins spread over 13 classes. In contrast to the myosins, the evolution of the arthropod kinesin inventory is not only determined by gene losses but also by many subtaxon-specific and species-specific gene duplications. All arthropods contain each of the subunits of the cytoplasmic dynein/dynactin complex. Except for the dynein light chains and the p150 dynactin subunit they contain single gene copies of the other subunits. Especially the roadblock light chain repertoire is very species-specific.</p> <p>Conclusion</p> <p>All 21 completely sequenced arthropods, including the twelve sequenced <it>Drosophila </it>species, contain a species-specific set of motor proteins. The phylogenetic analysis of all genes as well as the protein repertoire placed <it>Daphnia pulex </it>closest to the root of the Arthropoda. The louse <it>Pediculus humanus corporis </it>is the closest relative to <it>Daphnia </it>followed by the group of the honeybee <it>Apis mellifera </it>and the jewel wasp <it>Nasonia vitripenni</it>s. After this group the rust-red flour beetle <it>Tribolium castaneum </it>and the silkworm <it>Bombyx mori </it>diverged very closely from the lineage leading to the <it>Drosophila </it>species.</p

    diArk – a resource for eukaryotic genome research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective) it is therefore important to have up-to-date knowledge about the various resources providing primary data.</p> <p>Description</p> <p>The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest.</p> <p>Conclusion</p> <p>We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.</p

    Scipio: Using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species

    Get PDF
    Background: For many types of analyses, data about gene structure and locations of non-coding regions of genes are required. Although a vast amount of genomic sequence data is available, precise annotation of genes is lacking behind. Finding the corresponding gene of a given protein sequence by means of conventional tools is error prone, and cannot be completed without manual inspection, which is time consuming and requires considerable experience. Results: Scipio is a tool based on the alignment program BLAT to determine the precise gene structure given a protein sequence and a genome sequence. It identifies intron-exon borders and splice sites and is able to cope with sequencing errors and genes spanning several contigs in genomes that have not yet been assembled to supercontigs or chromosomes. Instead of producing a set of hits with varying confidence, Scipio gives the user a coherent summary of locations on the genome that code for the query protein. The output contains information about discrepancies that may result from sequencing errors. Scipio has also successfully been used to find homologous genes in closely related species. Scipio was tested with 979 protein queries against 16 arthropod genomes ( intra species search). For cross- species annotation, Scipio was used to annotate 40 genes from Homo sapiens in the primates Pongo pygmaeus abelii and Callithrix jacchus. The prediction quality of Scipio was tested in a comparative study against that of BLAT and the well established program Exonerate. Conclusion: Scipio is able to precisely map a protein query onto a genome. Even in cases when there are many sequencing errors, or when incomplete genome assemblies lead to hits that stretch across multiple target sequences, it very often provides the user with the correct determination of intron-exon borders and splice sites, showing an improved prediction accuracy compared to BLAT and Exonerate. Apart from being able to find genes in the genome that encode the query protein, Scipio can also be used to annotate genes in closely related species

    Predicting mutually exclusive spliced exons based on exon length, splice site and reading frame conservation, and exon sequence homology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing of pre-mature RNA is an important process eukaryotes utilize to increase their repertoire of different protein products. Several types of different alternative splice forms exist including exon skipping, differential splicing of exons at their 3'- or 5'-end, intron retention, and mutually exclusive splicing. The latter term is used for clusters of internal exons that are spliced in a mutually exclusive manner.</p> <p>Results</p> <p>We have implemented an extension to the WebScipio software to search for mutually exclusive exons. Here, the search is based on the precondition that mutually exclusive exons encode regions of the same structural part of the protein product. This precondition provides restrictions to the search for candidate exons concerning their length, splice site conservation and reading frame preservation, and overall homology. Mutually exclusive exons that are not homologous and not of about the same length will not be found. Using the new algorithm, mutually exclusive exons in several example genes, a dynein heavy chain, a muscle myosin heavy chain, and Dscam were correctly identified. In addition, the algorithm was applied to the whole <it>Drosophila melanogaster </it>X chromosome and the results were compared to the Flybase annotation and an <it>ab initio </it>prediction. Clusters of mutually exclusive exons might be subsequent to each other and might encode dozens of exons.</p> <p>Conclusions</p> <p>This is the first implementation of an automatic search for mutually exclusive exons in eukaryotes. Exons are predicted and reconstructed in the same run providing the complete gene structure for the protein query of interest. WebScipio offers high quality gene structure figures with the clusters of mutually exclusive exons colour-coded, and several analysis tools for further manual inspection. The genome scale analysis of all genes of the <it>Drosophila melanogaster </it>X chromosome showed that WebScipio is able to find all but two of the 28 annotated mutually exclusive spliced exons and predicts 39 new candidate exons. Thus, WebScipio should be able to identify mutually exclusive spliced exons in any query sequence from any species with a very high probability. WebScipio is freely available to academics at <url>http://www.webscipio.org</url>.</p

    WebScipio: An online tool for the determination of gene structures using protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obtaining the gene structure for a given protein encoding gene is an important step in many analyses. A software suited for this task should be readily accessible, accurate, easy to handle and should provide the user with a coherent representation of the most probable gene structure. It should be rigorous enough to optimise features on the level of single bases and at the same time flexible enough to allow for cross-species searches.</p> <p>Results</p> <p>WebScipio, a web interface to the Scipio software, allows a user to obtain the corresponding coding sequence structure of a here given a query protein sequence that belongs to an already assembled eukaryotic genome. The resulting gene structure is presented in various human readable formats like a schematic representation, and a detailed alignment of the query and the target sequence highlighting any discrepancies. WebScipio can also be used to identify and characterise the gene structures of homologs in related organisms. In addition, it offers a web service for integration with other programs.</p> <p>Conclusion</p> <p>WebScipio is a tool that allows users to get a high-quality gene structure prediction from a protein query. It offers more than 250 eukaryotic genomes that can be searched and produces predictions that are close to what can be achieved by manual annotation, for in-species and cross-species searches alike. WebScipio is freely accessible at <url>http://www.webscipio.org</url>.</p

    A Combination of Diffusion and Active Translocation Localizes Myosin 10 to the Filopodial Tip

    Get PDF
    Myosin 10 is an actin-based molecular motor that localizes to the tips of filopodia in mammalian cells. To understand how it is targeted to this distinct region of the cell we have used total internal reflection fluorescence microscopy (TIRFM) to study the movement of individual full length and truncated GFP-tagged molecules. Truncation mutants lacking the motor region failed to localize to filopodial tips but still bound transiently at the plasma membrane. Deletion of the single alpha helical (SAH) and anti-parallel coiled-coil forming regions, which lie between the motor and PH domains, reduced the instantaneous velocity of intrafilopodial movement but did not affect the number of substrate adherent filopodia. Deletion of the anti-parallel coiled-coil forming region, but not the EKR rich region of the SAH domain restored intrafilopodial trafficking, suggesting this region is important in determining myosin 10 motility. We propose a model by which myosin 10 rapidly targets to the filopodial tip via a sequential reduction in dimensionality, first undergoing rapid diffusion within the 3-dimensional volume of the cell body combined with periods of slower, 2-dimensional diffusion in the plane of the plasma membrane then making a 1-dimensional motorized movement along the polarized actin filament bundle within the filopodium until reaching the tip becoming confined at a single point. Here we have observed directly each phase of the trafficking process using single molecule fluorescence imaging of live cells and have quantified our observations using single particle tracking, autocorrelation analysis and kymographs

    UNC-45a promotes myosin folding and stress fiber assembly

    Get PDF
    Contractile actomyosin bundles, stress fibers, are crucial for adhesion, morphogenesis, and mechanosensing in nonmuscle cells. However, the mechanisms by which nonmuscle myosin II (NM-II) is recruited to those structures and assembled into functional bipolar filaments have remained elusive. We report that UNC-45a is a dynamic component of actin stress fibers and functions as a myosin chaperone in vivo. UNC-45a knockout cells display severe defects in stress fiber assembly and consequent abnormalities in cell morphogenesis, polarity, and migration. Experiments combining structured-illumination microscopy, gradient centrifugation, and proteasome inhibition approaches revealed that a large fraction of NM-II and myosin-1c molecules fail to fold in the absence of UNC-45a. The remaining properly folded NM-II molecules display defects in forming functional bipolar filaments. The C-terminal UNC-45/Cro1/She4p domain of UNC-45a is critical for NM-II folding, whereas the N-terminal tetratricopeptide repeat domain contributes to the assembly of functional stress fibers. Thus, UNC-45a promotes generation of contractile actomyosin bundles through synchronized NM-II folding and filament-assembly activities.Peer reviewe

    The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis.

    Get PDF
    The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions
    corecore