40 research outputs found

    The applicability of physical optics in the millimetre and sub-millimetre spectral region. : Part I: The ray tracing with diffraction on facets method

    Get PDF
    This document is the Accepted Manuscript version of the following article: A. J. Baran, Evelyn Hesse, and Odran Sourdeval, ‘ The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method’, Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 190, (2017), pp. 13-25, first published online on 3 January 2017. The version of record is available online at doi: http://dx.doi.org/10.1016/j.jqsrt.2016.12.030 Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved.Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.Peer reviewe

    Analysis and quantification of ENSO-linked changes in the tropical Atlantic cloud vertical distribution using 14 years of MODIS observations

    Get PDF
    A total of 14 years (September 2002 to September 2016) of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) monthly mean cloud data are used to quantify possible changes in the cloud vertical distribution over the tropical Atlantic. For the analysis multiple linear regression techniques are used. For the investigated time period significant linear changes were found in the domain-averaged cloud-top height (CTH) (−178 m per decade), the high-cloud fraction (HCF) (−0.0006 per decade), and the low-cloud amount (0.001 per decade). The interannual variability of the time series (especially CTH and HCF) is highly influenced by the El Niño–Southern Oscillation (ENSO). Separating the time series into two phases, we quantified the linear change associated with the transition from more La Niña-like conditions to a phase with El Niño conditions (Phase 2) and vice versa (Phase 1). The transition from negative to positive ENSO conditions was related to a decrease in total cloud fraction (TCF) (−0.018 per decade; not significant) due to a reduction in the high-cloud amount (−0.024 per decade; significant). Observed anomalies in the mean CTH were found to be mainly caused by changes in HCF rather than by anomalies in the height of cloud tops themselves. Using the large-scale vertical motion ω at 500 hPa (from ERA-Interim ECMWF reanalysis data), the observed anomalies were linked to ENSO-induced changes in the atmospheric large-scale dynamics. The most significant and largest changes were found in regions with strong large-scale upward movements near the Equator. Despite the fact that with passive imagers such as MODIS it is not possible to vertically resolve clouds, this study shows the great potential for large-scale analysis of possible changes in the cloud vertical distribution due to the changing climate by using vertically resolved cloud cover and linking those changes to large-scale dynamics using other observations or model data

    Cold cloud microphysical process rates in a global chemistry–climate model

    Get PDF
    Microphysical processes in cold clouds which act as sources or sinks of hydrometeors below 0 degrees C control the ice crystal number concentrations (ICNCs) and in turn the cloud radiative effects. Estimating the relative importance of the cold cloud microphysical process rates is of fundamental importance to underpin the development of cloud parameterizations for weather, atmospheric chemistry, and climate models and to compare the output with observations at different temporal resolutions. This study quantifies and investigates the ICNC rates of cold cloud microphysical processes by means of the chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) and defines the hierarchy of sources and sinks of ice crystals. Both microphysical process rates, such as ice nucleation, aggregation, and secondary ice production, and unphysical correction terms are presented. Model ICNCs are also compared against a satellite climatology. We found that model ICNCs are in overall agreement with satellite observations in terms of spatial distribution, although the values are overestimated, especially around high mountains. The analysis of ice crystal rates is carried out both at global and at regional scales. We found that globally the freezing of cloud droplets and convective detrainment over tropical land masses are the dominant sources of ice crystals, while aggregation and accretion act as the largest sinks. In general, all processes are characterized by highly skewed distributions. Moreover, the influence of (a) different ice nucleation parameterizations and (b) a future global warming scenario on the rates has been analysed in two sensitivity studies. In the first, we found that the application of different parameterizations for ice nucleation changes the hierarchy of ice crystal sources only slightly. In the second, all microphysical processes follow an upward shift in altitude and an increase by up to 10 % in the upper troposphere towards the end of the 21st century

    A New Outlook on Ice Cloud through Sub-Millimetre-Wave Scattering

    Get PDF
    Scattering by atmospheric ice at sub-mm-wave frequencies is a challenge to both the cloud physics and light scattering communities owing to scattering at these frequencies being dependent on assumptions about the particle size distribution, ice crystal shape, orientation and size. Moreover, the scattering also depends on how the particle density is assumed to evolve with size. As there is as yet no prediction of a universal PSD or mass–dimension or density–dimension relationship, the modelling of ice crystals, so as to conserve the observed scattering and ice mass, is potentially problematic. In this presentation, the challenge presented by sub-mm-wave scattering is explored through the study of an ice cloud case using a new sub-mm spectral-like radiometer that was deployed on board an aircraft. Here, we evaluate the predictive quality of applying members from an ensemble model of cirrus ice crystals to modelling observed sub-millimetre brightness temperatures. The airborne straight and level near-nadir observations used here were from a case of ice cloud, which occurred during a winter period. The airborne microwave observations were obtained using the International Submillimetre Airborne Radiometer (ISMAR) [1], as the observations collected were at near-nadir we do not as yet consider polarisation. The ISMAR instrument has five central frequencies located between 118 and 664 GHz, with a number of sub-channels situated around some of the central frequencies to obtain spectral-like observations. The frequency selected for presentation is the 664 GHz “window” channel. This channel selection reduces uncertainties in modelling the gaseous spectroscopy, thereby enabling the scattering properties of members of the ensemble model to be more directly evaluated at this frequency. This is also the frequency that is most sensitive to assumptions about the ice crystal models and microphysics. The methodologies adopted for the calculation of the single-scattering properties of the ensemble model members at this frequency have been previously peer-reviewed and published [2, 3]. As such, this presentation concentrates on the application of these methodologies to the interpretation of the airborne ISMAR observations using a fast, state-of-the-art line-by-line radiative transfer model [4]. Moreover, state-of-the-art airborne observations of particle size distributions (PSDs) were also collected from the ice cloud case. These in-situ PSDs, as well as an often used database of in-situ PSDs collected during the SPARTICUS campaign in 2010, are applied to the two most compact and spatial hexagonal ice aggregate members of the ensemble model. A further ice aggregate model, called the Voronoi model, forming a chain of polyhedral particles, constructed to follow an observed density–dimension relationship, was also applied so as to simulate the observations. From the in-situ PSDs, geometric optics-based power law relationships have been previously obtained between the ice water content and the bulk extinction coefficient [5]. These same geometric optics-based relationships were estimated using the area–dimension power laws predicted by the ensemble model members and the Voronoi model. The best-fit ensemble model members to the observed power laws, and the Voronoi model, were applied in order to simulate the sub-mm-wave observations. Thus, we demonstrate consistency of model application from the limit of geometric optics (i.e. typically at visible wavelengths) to the sub-mm. In this presentation, we demonstrate a general overlap between the uncertainty in the radiative transfer simulations assuming the ensemble model members and the uncertainty in ISMAR brightness temperature observations at 664 GHz. However, portions of the straight and level runs were either simulated well with the compact aggregate model member or a three-component model, consisting of the two members of the ensemble model and the Voronoi particle, but never with one and the same model. Owing to the Voronoi model being the most spatial of all the models, this model simulated, to within the upper end of the experimental uncertainty, the ISMAR observations, but never the coldest observations at the highest sub-mm-wave frequency. However, if a different density–dimension relationship were to be adopted in the modelling of the Voronoi model that predicted higher mass values, then this should result in an improved agreement with the observations. It is as yet unclear as to which density–dimension relation is best to apply in general. These observations indicate changes in microphysics in terms of the mass–dimension profile and/or the size of the ice crystals and, therefore, represent a challenge to the global retrieval of ice cloud properties using the Ice Cloud Imager (ICI), which is due for launch around 2022. A further uncertainty is the assumed parametrised shape of the PSD. We also show in this presentation that the choice of PSD and ice crystal models are of equal importance in interpreting sub-mm-wave observations. [1] Fox, S et al., 2017: ISMAR: an airborne submillimetre radiometer. Atmos. Meas. Tech., doi:10.5194/ amt-10-477-2017. [2] Baran, A. J., et al., 2018: The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models. JQSRT. 206, 68-80. [3] Baran, A. J., Hesse E., and Sourdeval O., 2017: The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method. JQSRT. 190, 83-100. [4] Havemann, S et al., The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC): a multipurpose code based on Principal Components, submitted to JQSRT (February 2018). [5] Fox, S et al., 2017: ISMAR: an airborne submillimetre radiometer. Atmos. Meas. Tech., doi:10.5194/ amt-10-477-2017.Peer reviewe

    Exploring Satellite-Derived Relationships between Cloud Droplet Number Concentration and Liquid Water Path Using a Large-Domain Large-Eddy Simulation

    Get PDF
    Important aspects of the adjustments to aerosol-cloud interactions can be examined using the relationship between cloud droplet number concentration (Nd) and liquid water path (LWP). Specifically, this relation can constrain the role of aerosols in leading to thicker or thinner clouds in response to adjustment mechanisms. This study investigates the satellite retrieved relationship between Nd and LWP for a selected case of mid-latitude continental clouds using high-resolution Large-eddy simulations (LES) over a large domain in weather prediction mode. Since the satellite retrieval uses the adiabatic assumption to derive the Nd, we have also considered adiabatic Nd (NAd) from the LES model for comparison. The joint histogram analysis shows that the NAd-LWP relationship in the LES model and the satellite is in approximate agreement. In both cases, the peak conditional probability (CP) is confined to lower NAd and LWP; the corresponding mean LWP (LWP) shows a weak relation with NAd. The CP shows a larger spread at higher NAd (>50 cm–3), and the LWP increases non-monotonically with increasing NAd in both cases. Nevertheless, both lack the negative NAd-LWP relationship at higher NAd, the entrainment effect on cloud droplets. In contrast, the model simulated Nd-LWP clearly illustrates a much more nonlinear (an increase in LWP with increasing Nd and a decrease in LWP at higher Nd) relationship, which clearly depicts the cloud lifetime and the entrainment effect. Additionally, our analysis demonstrates a regime dependency (marine and continental) in the NAd-LWP relation from the satellite retrievals. Comparing local vs large-scale statistics from satellite data shows that continental clouds exhibit only a weak nonlinear NAd-LWP relationship. Hence a regime-based Nd-LWP analysis is even more relevant when it comes to warm continental clouds and their comparison to satellite retrievals

    The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models

    Get PDF
    The bulk single-scattering properties of various randomly oriented aggregate ice crystal models are com- pared and contrasted at a number of frequencies between 89 and 874 GHz. The model ice particles consist of the ten-branched plate aggregate, five-branched plate aggregate, eight-branched hexagonal aggregate, Voronoi ice aggregate, six-branched hollow bullet rosette, hexagonal column of aspect ratio unity, and the ten-branched hexagonal aggregate. The bulk single-scattering properties of the latter two ice particle models have been calculated using the light scattering methods described in Part I, which represent the two most extreme members of an ensemble model of cirrus ice crystals. In Part I, it was shown that the method of physical optics could be combined with the T-matrix at a size parameter of about 18 to compute the bulk integral ice optical properties and the phase function in the microwave to sufficient ac- curacy to be of practical value. Here, the bulk single-scattering properties predicted by the two ensemble model members and the Voronoi model are shown to generally bound those of all other models at fre- quencies between 89 and 874 GHz, thus representing a three-component model of ice cloud that can be generally applied to the microwave, rather than using many differing ice particle models. Moreover, the Voronoi model and hollow bullet rosette scatter similarly to each other in the microwave. Furthermore, from the various comparisons, the importance of assumed shapes of the particle size distribution as well as cm-sized ice aggregates is demonstrated.Peer reviewedFinal Accepted Versio

    Study of optical and radiative properties of cirrus clouds deduced from the synergy between active and passive measurements : application in the context of the A-Train and future spatial missions

    No full text
    Les nuages de glace de type cirrus sont reconnus comme ayant un impact radiatif important mais encore mal déterminé sur le système Terre-atmosphère. Récemment, la constellation de satellites A-Train a efficacement contribué à leur étude, grâce un panel d’instruments en parfaite synergie les uns avec les autres. Dans cette thèse, nous proposons d’utiliser l’instrumentation de l’A-Train afin d’étudier les propriétés optiques et radiatives des cirrus. Dans un premier temps, des données issues de deux campagnes aéroportées sont utilisées, afin d’effectuer une validation des mesures du radiomètre infrarouge spatial IIR. Nous montrons de très bonnes similitudes entre les mesures radiométriques aéroportées et spatiales, ce qui permet de conclure à la validation de ces dernières. Une seconde étude présente un algorithme développé dans le but de restituer l’épaisseur optique des cirrus et la dimension effective des cristaux qui les composent, à partir des mesures de IIR. Nous montrons que ses résultats sont en accord avec des mesures in situ et des produits opérationnels, mais remarquons cependant que leur qualité pourrait être améliorée dans l’hypothèse d’une meilleure connaissance des propriétés de nuages d’eau liquide sous-jacents. Une troisième étude propose donc une amélioration de cet algorithme, permettant de restituer simultanément les propriétés d’une couche de nuage de glace et de deux couches de nuage d’eau liquide. Cet algorithme ’multi-couches’ est appliqué sur un grand nombre de cas, de manière à juger efficacement de la qualité de ses résultats. Des comparaisons avec divers produits opérationnels montrent une bonne cohérence de nos restitutions.Cirrus are cloud types that are recognized to have a strong but still poorly understood impact on the Earth-atmosphere radiation balance. Recently, the A-Train satellite constellation has efficiently contributed to the study of these clouds, due to a multitude of instruments in perfect synergism. In this PhD research, several A-Train instruments have been used to study the optical and radiative properties of cirrus. Firstly, with the help of the data from two airborne campaigns, we have performed a validation of the measurements from the Infrared Imaging Radiometer (IIR) onboard CALIPSO. We have observed strong similarities between the airborne and space borne radiometric measurements, which allows validating the latter. A second study presents an algorithm developed in order to perform retrievals of the optical thickness of cirrus and the effective size of their ice crystals using IIR measurements. We demonstrate that these retrievals are perfectly coherent with in situ measurements and operational products of IIR. It is nevertheless observed that better constraints on the properties of liquid water clouds underneath cirrus layers could significantly improve the retrievals. Therefore, a third study presents a modification of this algorithm, allowing us to simultaneously retrieve the properties of one cirrus layer and two layers of liquid water clouds underneath. This ‘multi-layer’ algorithm is applied to a large amount of cases in order to assess its effectiveness. Comparisons with several operational products indicate a good coherence of our retrievals
    corecore