545 research outputs found

    Design and development of a low-cost high-performance vehicle mounted UHF RFID system for tracking goods and inventory.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in the PDF

    APRIL: Active Preference-learning based Reinforcement Learning

    Get PDF
    This paper focuses on reinforcement learning (RL) with limited prior knowledge. In the domain of swarm robotics for instance, the expert can hardly design a reward function or demonstrate the target behavior, forbidding the use of both standard RL and inverse reinforcement learning. Although with a limited expertise, the human expert is still often able to emit preferences and rank the agent demonstrations. Earlier work has presented an iterative preference-based RL framework: expert preferences are exploited to learn an approximate policy return, thus enabling the agent to achieve direct policy search. Iteratively, the agent selects a new candidate policy and demonstrates it; the expert ranks the new demonstration comparatively to the previous best one; the expert's ranking feedback enables the agent to refine the approximate policy return, and the process is iterated. In this paper, preference-based reinforcement learning is combined with active ranking in order to decrease the number of ranking queries to the expert needed to yield a satisfactory policy. Experiments on the mountain car and the cancer treatment testbeds witness that a couple of dozen rankings enable to learn a competent policy

    DFT and k * p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells

    No full text
    Published online 30 october 2013. This work was performed using HPC resources from GENCI-CINES/IDRIS grant 2013-c2013096724.International audience3D hybrid organic perovskites, CH3NH3PbX3 (X = halogen), have recently been used to strongly improve the efficiency of dye sensitized solar cells (DSSC) leading to a new class of low-cost mesoscopic solar cells. CsSnI3 perovskite can also be used for hole conduction in DSSC. Density functional theory and GW corrections are used to compare lead and tin hybrid and all-inorganic perovskites. The room temperature optical absorption is associated to electronic transitions between the spin-orbit split-off band in the conduction band and the valence band. Spin-orbit coupling is about three times smaller for tin. Moreover, the effective mass of relevant band edge hole states is small (0.17). The high temperature phase sequence of CsSnI3 leading to the room temperature orthorhombic phase and the recently reported phases of CH3NH3MI3 (where M = Pb, Sn) close to the room temperature, are also studied. Tetragonal distortions from the ideal cubic phase are analysed by a k * p perturbation, including spin-orbit effect. In addition, the non-centrosymmetric phases of CH3NH3MI3 exhibit a splitting of the electronic bands away from the critical point. The present work shows that their physical properties are more similar to conventional semiconductors than to the absorbers used in DSS

    Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets

    Get PDF
    Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ºC has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ºC has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ºC has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ºC substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.This work was supported by the Dalian University of Technology through the program of the Sea-sky Scholar

    Preparation and characterization of dye-sensitized TiO2 nanorod solar cells

    Get PDF
    TiO2 nanorods were prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electron microscopy images show that the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimum photoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods

    Dye-sensitized solar cells: Investigation of D-A-Ï€-A organic sensitizers based on [1,2,5]selenadiazolo[3,4-c]pyridine

    Get PDF
    The authors gratefully acknowledge financial support from the Russian Science Foundation (grant no. 15-13-10022). Wenjun Wu thanks the Scientific Committee of Shanghai (14ZR1409700) for financial support. The authors thank the Leverhulme Trust for an International Network grant.We report two series of D-A-π-A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs) based on triphenylamine and N-hexyl-carbazole as electronic donors, respectively. Through varying auxiliary acceptors and π-spacers, several significant consequences on cell efficiency were identified: (i) a broadened UV-Vis absorption spectrum and low-lying LUMO level with [1,2,5]selenadiazolo [3,4-c] pyridine as auxiliary acceptor; (ii) compensation for the absorption valley around 400 nm in the UV-vis spectra by the introduction of a thiophene unit into the π-bridge; (iii) effective improvement of the power conversion efficiency (PCE) by means of cosensitization, leading to dye OKT-1 , 3.10% PCE, increased to 4.19% with squaraine dye SQ2 as co-sensitizer. The design criteria identified have opened the door for further optimization of this new dye family.PostprintPeer reviewe

    Structural modification of TiO2 nanorod films with an influence on the photovoltaic efficiency of a dye-sensitized solar cell (DSSC)

    Get PDF
    TiO2 nanorod films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. The structures of these nanorod films were modified by the variation of the oxygen pressure during the sputtering process. Although all these TiO2 nanorod films deposited at different oxygen pressures show an anatase structure, the orientation of the nanorod films varies with the oxygen pressure. Only a very weak (101) diffraction peak can be observed for the TiO2 nanorod film prepared at low oxygen pressure. However, as the oxygen pressure is increased, the (220) diffraction peak appears and the intensity of this diffraction peak is increased with the oxygen pressure. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. At low oxygen pressure, these sputtered TiO2 nanorods stick together and have a dense structure. As the oxygen pressure is increased, these sputtered TiO2 nanorods get separated gradually and have a porous structure. The optical transmittance of these TiO2 nanorod films has been measured and then fitted by OJL model. The porosities of the TiO2 nanorod films have been calculated. The TiO2 nanorod film prepared at high oxygen pressure shows a high porosity. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different oxygen pressures as photoelectrode. The optimum performance was achieved for the DSSC using the TiO2 nanorod film with the highest (220) diffraction peak and the highest porosity

    Theory of multiexciton generation in semiconductor nanocrystals

    Full text link
    We develop a generalized framework based on a Green's function formalism to calculate the efficiency of multiexciton gen-eration in nanocrystal quantum dots. The direct/indirect absorption and coherent/incoherent impact ionization mechanisms, often used to describe multiexciton generation in nanocrystals, are reviewed and rederived from the unified theory as certain approximations. In addition, two new limits are described systematically - the weak Coulomb coupling limit and the semi-wide band limit. We show that the description of multiexciton generation in nanocrystals can be described as incoherent process and we discuss the scaling of multiexciton generation with respect to the photon energy and nanocrystal size. Illustrations are given for three prototype systems: CdSe, InAs and silicon quantum dots.Comment: 9 pages, 5 figure

    Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation.

    Get PDF
    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol-gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV-vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV-vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    • …
    corecore