82 research outputs found

    A regional nuclear conflict would compromise global food security

    Get PDF
    A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history

    The Influence of Foreign vs North American Emissions on Surface Ozone in the US

    Get PDF
    As part of the Hemispheric Transport of Air Pollution (HTAP; www.htap.org) project, we analyze results from 16 global and hemispheric chemical transport models and compare these to Clean Air Status and Trends Network (CASTNet) observations in the United States (US) for 2001. Using the policy-relevant maximum daily 8-h ozone (MDA8 O3) statistic, the multi-model ensemble represents the observations well (mean r2=0.57, ensemble bias=+4.1 ppbv for all regions and all seasons) despite a wide range in the individual model results. Correlations are strongest in the NorthEastern US during spring and fall (r2=0.68); and weakest in the Midwestern US in summer (r2=0.46). However, large positive mean biases exist during summer for all Eastern US regions, ranging from 10¿20 ppbv, and a smaller negative bias is present in the Western US during spring (3 ppbv). In most all other regions and seasons, the biases of the model ensemble simulations are 5 ppbv. Sensitivity simulations in which anthropogenic O3-precursor emissions (NOx+NMVOC+CO+aerosols) were decreased by 20% in each of four source regions: East Asia (EA), South Asia (SA), Europe (EU) and North America (NA) show that the greatest response of MDA8 O3 to the summed foreign emissions reductions occurs during spring in the West (0.9 ppbv reduction due to 20% reductions from EA+SA+EU). East Asia is the largest contributor to MDA8 O3 at all ranges of the O3 distribution for most regions (typically 0.45 ppbv). The exception is in the NorthEastern US where European emissions reductions had the greatest impact on MDA8 O3, particularly in the middle of the MDA8 O3 distribution (response of 0.35 ppbv between 35¿55 ppbv). In all regions and seasons, however, O3-precursor emissions reductions of 20% in the NA source region decrease MDA8 O3 the most by a factor of 2 to nearly 10 relative to foreign emissions reductions. The O3 response to anthropogenic NA emissions is greatest in the Eastern US during summer at the high end of the O3 distribution (5-6 ppbv for 20% reductions). While the impact of foreign emissions on surface O3 in the US is not negligible and is of increasing concern given the growth in emissions upwind of the US - domestic emissions reductions remain a farmore effective means of decreasing MDA8 O3 values, particularly those above 75 ppb(the current US standard).JRC.H.2-Air and Climat

    The influence of foreign vs. North American emissions on surface ozone in the US

    Get PDF
    As part of the Hemispheric Transport of Air Pollution (HTAP; http:// www.htap.org) project, we analyze results from 15 global and 1 hemispheric chemical transport models and compare these to Clean Air Status and Trends Network (CASTNet) observations in the United States (US) for 2001. Using the policy-relevant maximum daily 8-h average ozone (MDA8 O3) statistic, the multi-model ensemble represents the observations well (mean r2=0.57, ensemble bias = +4.1 ppbv for all US regions and all seasons) despite a wide range in the individual model results. Correlations are strongest in the northeastern US during spring and fall (r2=0.68); and weakest in the midwestern US in summer (r2=0.46). However, large positive mean biases exist during summer for all eastern US regions, ranging from 10–20 ppbv, and a smaller negative bias is present in the western US during spring (~3 ppbv). In nearly all other regions and seasons, the biases of the model ensemble simulations are ≤5 ppbv. Sensitivity simulations in which anthropogenic O3-precursor emissions (NOx + NMVOC + CO + aerosols) were decreased by 20% in four source regions: East Asia (EA), South Asia (SA), Europe (EU) and North America (NA) show that the greatest response of MDA8 O3 to the summed foreign emissions reductions occurs during spring in the West (0.9 ppbv reduction due to 20% emissions reductions from EA + SA + EU). East Asia is the largest contributor to MDA8 O3 at all ranges of the O3 distribution for most regions (typically ~0.45 ppbv) followed closely by Europe. The exception is in the northeastern US where emissions reductions in EU had a slightly greater influence than EA emissions, particularly in the middle of the MDA8 O3 distribution (response of ~0.35 ppbv between 35–55 ppbv). EA and EU influences are both far greater (about 4x) than that from SA in all regions and seasons. In all regions and seasons O3-precursor emissions reductions of 20% in the NA source region decrease MDA8 O3 the most – by a factor of 2 to nearly 10 relative to foreign emissions reductions. The O3 response to anthropogenic NA emissions is greatest in the eastern US during summer at the high end of the O3 distribution (5–6 ppbv for 20% reductions). While the impact of foreign emissions on surface O3 in the US is not negligible – and is of increasing concern given the recent growth in Asian emissions – domestic emissions reductions remain a far more effective means of decreasing MDA8 O3 values, particularly those above 75 ppb (the current US standard)

    The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols

    Get PDF
    The important role of fire in regulating vegetation community composition and contributions to emissions of greenhouse gases and aerosols make it a critical component of dynamic global vegetation models and Earth system models. Over two decades of development, a wide variety of model structures and mechanisms have been designed and incorporated into global fire models, which have been linked to different vegetation models. However, there has not yet been a systematic examination of how these different strategies contribute to model performance. Here we describe the structure of the first phase of the Fire Model Intercomparison Project (FireMIP), which for the first time seeks to systematically compare a number of models. By combining a standardized set of input data and model experiments with a rigorous comparison of model outputs to each other and to observations, we will improve the understanding of what drives vegetation fire, how it can best be simulated, and what new or improved observational data could allow better constraints on model behavior. Here we introduce the fire models used in the first phase of FireMIP, the simulation protocols applied, and the benchmarking system used to evaluate the models

    Analysis of present day and future OH and methane lifetime in the ACCMIP simulations

    Get PDF
    Results from simulations performed for the Atmospheric Chemistry and Climate Modeling Intercomparison Project (ACCMIP) are analysed to examine how OH and methane lifetime may change from present day to the future, under different climate and emissions scenarios. Present day (2000) mean tropospheric chemical lifetime derived from the ACCMIP multi-model mean is 9.8 ± 1.6 yr (9.3 ± 0.9 yr when only including selected models), lower than a recent observationally-based estimate, but with a similar range to previous multi-model estimates. Future model projections are based on the four Representative Concentration Pathways (RCPs), and the results also exhibit a large range. Decreases in global methane lifetime of 4.5 ± 9.1% are simulated for the scenario with lowest radiative forcing by 2100 (RCP 2.6), while increases of 8.5 ± 10.4% are simulated for the scenario with highest radiative forcing (RCP 8.5). In this scenario, the key driver of the evolution of OH and methane lifetime is methane itself, since its concentration more than doubles by 2100 and it consumes much of the OH that exists in the troposphere. Stratospheric ozone recovery, which drives tropospheric OH decreases through photolysis modifications, also plays a partial role. In the other scenarios, where methane changes are less drastic, the interplay between various competing drivers leads to smaller and more diverse OH and methane lifetime responses, which are difficult to attribute. For all scenarios, regional OH changes are even more variable, with the most robust feature being the large decreases over the remote oceans in RCP8.5. Through a regression analysis, we suggest that differences in emissions of non-methane volatile organic compounds and in the simulation of photolysis rates may be the main factors causing the differences in simulated present day OH and methane lifetime. Diversity in predicted changes between present day and future OH was found to be associated more strongly with differences in modelled temperature and stratospheric ozone changes. Finally, through perturbation experiments we calculated an OH feedback factor (<i>F</i>) of 1.24 from present day conditions (1.50 from 2100 RCP8.5 conditions) and a climate feedback on methane lifetime of 0.33 ± 0.13 yr K<sup>−1</sup>, on average. Models that did not include interactive stratospheric ozone effects on photolysis showed a stronger sensitivity to climate, as they did not account for negative effects of climate-driven stratospheric ozone recovery on tropospheric OH, which would have partly offset the overall OH/methane lifetime response to climate change
    corecore