88 research outputs found

    Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV

    Get PDF
    Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Quantum-state control in optical lattices

    Full text link
    We study the means to prepare and coherently manipulate atomic wave packets in optical lattices, with particular emphasis on alkali atoms in the far-detuned limit. We derive a general, basis independent expression for the lattice operator, and show that its off-diagonal elements can be tailored to couple the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a trapped atom in a quantum coherent fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We explore the use of atoms bound in optical lattices to study quantum tunneling and the generation of macroscopic superposition states in a double-well potential. Far-off-resonance optical potentials lend themselves particularly well to reservoir engineering via well controlled fluctuations in the potential, making the atom/lattice system attractive for the study of decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199

    Systematic comparison of ISOLDE-SC yields with calculated in-target production rates

    Full text link
    Recently, a series of dedicated inverse-kinematics experiments performed at GSI, Darmstadt, has brought an important progress in our understanding of proton and heavy-ion induced reactions at relativistic energies. The nuclear reaction code ABRABLA that has been developed and benchmarked against the results of these experiments has been used to calculate nuclide production cross sections at different energies and with different targets and beams. These calculations are used to estimate nuclide production rates by protons in thick targets, taking into account the energy loss and the attenuation of the proton beam in the target, as well as the low-energy fission induced by the secondary neutrons. The results are compared to the yields of isotopes of various elements obtained from different targets at CERN-ISOLDE with 600 MeV protons, and the overall extraction efficiencies are deduced. The dependence of these extraction efficiencies on the nuclide half-life is found to follow a simple pattern in many different cases. A simple function is proposed to parameterize this behavior in a way that quantifies the essential properties of the extraction efficiency for the element and the target - ion-source system in question.Comment: 46 pages, 49 figures, background information on http://www-w2k.gsi.de/charms

    Position Statement on Atopic Dermatitis in Sub-Saharan Africa:current status and roadmap

    Get PDF
    The first International Society of Atopic Dermatitis (ISAD) global meeting dedicated to atopic dermatitis (AD) in Sub-Saharan Africa (SSA) was held in Geneva, Switzerland in April 2019. A total of 30 participants were present at the meeting, including those from 17 SSA countries, representatives of the World Health Organization (WHO), the International Foundation for Dermatology (IFD) (a committee of the International League of Dermatological Societies, ILDS www.ilds.org), the Fondation pour la Dermatite Atopique, as well as specialists in telemedicine, artificial intelligence and therapeutic patient education (TPE)

    Attosecond imaging of molecular electronic wavepackets

    Get PDF
    International audienceA strong laser field may tunnel ionize a molecule from several orbitals simultaneously, forming an attosecond electron–hole wavepacket. Both temporal and spatial information on this wavepacket can be obtained through the coherent soft X-ray emission resulting from the laser-driven recollision of the liberated electron with the core. By characterizing the emission from aligned N 2 molecules, we demonstrate the attosecond contributions of the two highest occupied molecular orbitals. We determine conditions where they are disentangled in the real and imaginary parts of the emission dipole moment. This allows us to carry out a tomographic reconstruction of both orbitals with angstrom spatial resolution. Their coherent superposition provides experimental images of the attosecond wavepacket created in the ionization process. Our results open the prospect of imaging ultrafast intramolecular dynamics combining attosecond and angstrom resolutions

    Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Get PDF
    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment

    Guidelines for chemotherapy of biliary tract and ampullary carcinomas

    Get PDF
    Few randomized controlled trials (RCTs) with large numbers of patients have been conducted to date in patients with biliary tract cancer, and standard chemotherapy has not been established yet. In this article we review previous studies and clinical trials regarding chemotherapy for unresectable biliary tract cancer, and we present guidelines for the appropriate use of chemotherapy in patients with biliary tract cancer. According to an RCT comparing chemotherapy and best supportive care for these patients, survival was significantly longer and quality of life was significantly better in the chemotherapy group than in the control group. Thus, chemotherapy for patients with biliary tract cancer seems to be a significant treatment of choice. However, chemotherapy for patients with biliary tract cancer should be indicated for those with unresectable, locally advanced disease or distant metastasis, or for those with recurrence after resection. That is why making the diagnosis of unresectable disease should be done with greatest care. As a rule, pathological diagnosis, including cytology or histopathological diagnosis, is preferable. Chemotherapy is recommended in patients with a good general condition, because in patients with general deterioration, such as those with a performance status of 2 or 3 or those with insufficient biliary decompression, the benefit of chemotherapy is limited. As chemotherapy for unresectable biliary tract cancer, the use of gemcitabine or tegafur/gimeracil/oteracil potassium is recommended. As postoperative adjuvant chemotherapy, no effective adjuvant therapy has been established at the present time. It is recommended that further clinical trials, especially large multi-institutional RCTs (phase III studies) using novel agents such as gemcitabine should be performed as soon as possible in order to establish a standard treatment
    corecore